Dear R-users, I would like to maximize the function g above which depends on 4 parameters (2 vectors, 1 real number, and 1 matrix) using optim() and BFGS method. Here is my code: # fonction to maximize g=function(x) { x1 = x[1:ncol(X)] x2 = x[(ncol(X)+1)] x3 = matrix(x[(ncol(X)+2):(ncol(X)+1+ncol(X)*ncol(Y))],nrow=ncol(X),ncol=ncol(Y)) x4 = x[(ncol(X)+1+ncol(X)*ncol(Y)+1):length(x)] res1=rep(0,nrow(X)) res2=matrix(0,nrow=nrow(X),ncol=ncol(Y)) log.res2=matrix(0,nrow=nrow(X),ncol=ncol(Y)) res2.b=rep(0,nrow(X)) res3 = rep(0,nrow(X)) res3.b = rep(0,nrow(X)) for (i in 1:nrow(X)) { res1[i]=1/(1+exp(-t(x1)%*%X[i,]-x2)) for (t in 1:ncol(Y)) { res2[i,t] = ((1-(1+exp(-t(x3[,t])%*%X[i,]-x4[t]))^(-1))^(abs(Y[i,t]-Yb[i])))*(((1+exp(-t(x3[,t])%*%X[i,]-x4[t]))^(-1))^(1-abs(Y[i,t]-Yb[i]))) log.res2[i,t]=log(res2[i,t]) res2.b[i]=res2.b[i]+log.res2[i,t] } res3[i] = p_tilde[i]*log(res1[i]) res3.b[i] = p_tilde[i]*(res2.b[i]) } -(ncol(Y)*sum(res3)+sum(res3.b))
} ##### Gradiants: gr=function(x) { x1 = x[1:ncol(X)] x2 = x[(ncol(X)+1)] x3 = matrix(x[(ncol(X)+2):(ncol(X)+1+ncol(X)*ncol(Y))],nrow=ncol(X),ncol=ncol(Y)) x4 = x[(ncol(X)+1+ncol(X)*ncol(Y)+1):length(x)] gr1 = rep(0,ncol(X)) gr4 = rep(0,ncol(Y)) gr3 = matrix(0,nrow=ncol(X),ncol=ncol(Y)) gr1.b = matrix(0,nrow=nrow(X),ncol=ncol(X)) gr2.b = rep(0,nrow(X)) eta = matrix(0,nrow=nrow(X),ncol=ncol(Y)) d.eta.3 = array(0,dim=c(nrow(X),ncol(X),ncol(Y))) d.eta.4 = matrix(0,nrow=nrow(X),ncol=ncol(Y)) gr3.b1 = array(0,dim=c(nrow(X),ncol(X),ncol(Y))) gr4.b1 = matrix(0,nrow=nrow(X),ncol=ncol(Y)) #Gradiant of alpha and beta for (i in 1:nrow(X)) { gr1.b[i,] = (2*p_tilde[i]-1)*((exp(-t(x1)%*%X[i,]-x2)*X[i,])/(1+exp(-t(x1)%*%X[i,]-x2))^2) gr2.b[i] = (2*p_tilde[i]-1)*((exp(-t(x1)%*%X[i,]-x2))/(1+exp(-t(x1)%*%X[i,]-x2))^2) } for (j in 1:ncol(X)) { gr1[j] = sum(gr1.b[,j]) } gr2 = sum(gr2.b) #Gradiant de w et gamma for (i in 1:nrow(X)) { for (t in 1:ncol(Y)) { eta[i,t] = 1/(1+exp(-t(x3[,t])%*%X[i,]-x4[t])) d.eta.3[i,,t] = eta[i,t]*(1-eta[i,t])*X[i,] d.eta.4[i,t] = eta[i,t]*(1-eta[i,t]) gr3.b1[i,,t] = p_tilde[i]*((-abs(Y[i,t]-Yb[i]))*(1-eta[i,t])^(-1)+(1-abs(Y[i,t]-Yb[i]))* (eta[i,t])^(-1))*d.eta.3[i,,t] gr4.b1[i,t] = p_tilde[i]*((-abs(Y[i,t]-Yb[i]))*(1-eta[i,t])^(-1)+(1-abs(Y[i,t]-Yb[i]))* (eta[i,t])^(-1))*d.eta.4[i,t] } } for (t in 1:ncol(Y)) { for (j in 1:ncol(X)) { gr3[j,t] = sum(gr3.b1[,j,t]) } gr4[t] = sum(gr4.b1[,t]) } c(-gr1,-gr2,-gr3,-gr4) } opt = optim(c(alpha[,c+1],beta[c+1],w,gamma),g,gr,method="BFGS") The problem is that it gives me wrong results, and I have noticed that if I change my function to maximize (for example if, instead of -(ncol(Y)*sum(res3)+sum(res3.b)), I try to maximise -(ncol(Y)*sum(res3)), it gives me the exactly same results...which is not possible! So maybe I am using optim() in a wrong way...Does someone have an idea what could be wrong in my code ? Thank you very much in advance [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.