Dear Renoir, are you referring to:
http://econ.la.psu.edu/~hbierens/TVCOINT.PDF ? If so, no, but you could up this framework fairly easily and hereby employ the functions of urca. But this should already be evident from the package's manual. Best, Bernhard > -----Ursprüngliche Nachricht----- > Von: renoir vieira [mailto:renoirvie...@gmail.com] > Gesendet: Donnerstag, 31. März 2011 22:27 > An: Grzegorz Konat > Cc: Pfaff, Bernhard Dr.; r-help@r-project.org > Betreff: Re: [R] VECM with UNRESTRICTED TREND > > Dear Pfaff, > > Would that be possible to fit a Time varying VECM using urca? > > Yours, > Renoir > > On Thursday, March 31, 2011, Grzegorz Konat > <grzegorz.ko...@ibrkk.pl> wrote: > > The code you gave me works fine with Finland, but the same > for my data > > - does not! > > I do: > > > > library(urca) > > data(my.data) > > dat1 <- my.data[, c("dY", "X", "dM")] > > trend <- matrix(1:nrow(dat1), ncol = 1) > > colnames(trend) <- "trd" > > yxm.vecm <- ca.jo(dat1, type = "trace", ecdet = "const", K > = 2, spec = > > "longrun", dumvar = trend) > > > > and the result is again: > > > > Error in r[i1, , drop = FALSE] - r[-nrow(r):-(nrow(r) - lag > + 1L), , > > drop = FALSE] : > > non-numeric argument to binary operator > > > > I attach my dataset in xls format. If you have 5 minutes > and wish to > > check it out, I'd be extremely grateful! > > > > Best, > > Greg > > > > > > > > 2011/3/31 Pfaff, Bernhard Dr. <bernhard_pf...@fra.invesco.com> > > > >> Well, without further information, I do not know, but try the > >> following > >> > >> library(urca) > >> example(ca.jo) > >> trend <- matrix(1:nrow(sjf), ncol = 1) > >> colnames(trend) <- "trd" > >> ca.jo(sjf, type = "trace", ecdet = "const", K = 2, spec = > "longrun", > >> dumvar = trend) > >> > >> Best, > >> Bernhard > >> > >> > >> > >> ------------------------------ > >> *Von:* Grzegorz Konat [mailto:grzegorz.ko...@ibrkk.pl] > >> *Gesendet:* Donnerstag, 31. März 2011 14:40 > >> > >> *An:* Pfaff, Bernhard Dr.; r-help@r-project.org > >> *Betreff:* Re: [R] VECM with UNRESTRICTED TREND > >> > >> 'time' was a trend variable from my.data set. Equivalent to the > >> output of the command 'matrix' you just gave me. > >> > >> So now I did: > >> > >> library(urca) > >> data(my.data) > >> names(my.data) > >> attach(my.data) > >> dat1 <- my.data[, c("dY", "X", "dM")] > >> mat1 <- matrix(seq(1:nrow(dat1)), ncol = 1) > >> args('ca.jo') > >> yxm.vecm <- ca.jo(dat1, type = "trace", ecdet = "const", K > = 2, spec > >> = "longrun", dumvar=mat1) > >> > >> and the output is: > >> > >> Error in r[i1, , drop = FALSE] - r[-nrow(r):-(nrow(r) - > lag + 1L), , > >> drop = FALSE] : > >> non-numeric argument to binary operator In addition: Warning > >> message: > >> In ca.jo(dat1, type = "trace", ecdet = "const", K = 2, spec = > >> "longrun", > >> : > >> No column names in 'dumvar', using prefix 'exo' instead. > >> > >> What do I do wrong? > >> > >> Best, > >> Greg > >> > >> > >> 2011/3/31 Pfaff, Bernhard Dr. <bernhard_pf...@fra.invesco.com> > >> > >>> > >>> > >>> > >>> Hello Bernhard, > >>> > >>> thank You so much one again! Now I (more or less) understand the > >>> idea, but still have problem with its practical application. > >>> > >>> I do (somewhat following example 8.1 in your textbook): > >>> > >>> library(urca) > >>> data(my.data) > >>> names(my.data) > >>> attach(my.data) > >>> dat1 <- my.data[, c("dY", "X", "dM")] > >>> dat2 <- cbind(time) > >>> > >>> What is 'time'? Just employ matrix(seq(1:nrow(dat1)), > ncol = 1) for > >>> creating the trend variable. > >>> > >>> Best, > >>> Bernhard > >>> > >>> > >>> args('ca.jo') > >>> yxm.vecm <- ca.jo(dat1, type = "trace", ecdet = "trend", > K = 2, spec > >>> = "longrun", dumvar=dat2) > >>> > >>> The above code produces following output: > >>> > >>> Error in r[i1, , drop = FALSE] - r[-nrow(r):-(nrow(r) - > lag + 1L), > >>> , drop = FALSE] : > >>> non-numeric argument to binary operator > >>> > >>> What does that mean? Should I use cbind command to dat1 > as well? And > >>> doesn't it transform the series into series of integer numbers? > >>> > >>> Thank you once again (especially for your patience). > >>> > >>> Best, > >>> Greg > >>> > >>> > >>> > >>> 2011/3/31 Pfaff, Bernhard Dr. <bernhard_pf...@fra.invesco.com> > >>> > >>>> Hello Greg, > >>>> > >>>> you include your trend as a (Nx1) matrix and use this > for 'dumvar'. > >>>> The matrix 'dumvar' is just added to the VECM as deterministic > >>>> regressors and while you are referring to case 5, this > is basically > >>>> what you are after, if I am not mistaken. But we aware that this > >>>> implies a quadratic trend for the levels > ***************************************************************** Confidentiality Note: The information contained in this ...{{dropped:10}} ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.