What you say about mixture models is true in general, however this fit was the best of 100 random EM starts. Unbounded likelihoods I believe are only a problem for continuous data mixture models and mine was discrete. Anyway it's nearly midnight now here so I'd better sleep. Before I go, here are the singular values:
> svd(S)$d [1] 1.207593e+05 1.049068e+05 9.308082e+04 8.332758e+04 6.929102e+04 [6] 6.323142e+04 5.977638e+04 5.723191e+04 4.375631e+04 2.723792e+04 [11] 2.592586e+04 2.411705e+04 2.392963e+04 2.196578e+04 2.169200e+04 [16] 2.123290e+04 2.054479e+04 1.948157e+04 1.927687e+04 1.777423e+04 [21] 1.768510e+04 1.754492e+04 1.735954e+04 1.643881e+04 1.600038e+04 [26] 1.588009e+04 1.584179e+04 1.419902e+04 1.401829e+04 1.332706e+04 [31] 1.310741e+04 1.282854e+04 1.240196e+04 1.229453e+04 1.198187e+04 [36] 1.168831e+04 1.069801e+04 1.063407e+04 1.060623e+04 1.056741e+04 [41] 1.037193e+04 1.018307e+04 9.954778e+03 9.691297e+03 9.544900e+03 [46] 9.353932e+03 9.084223e+03 9.023719e+03 8.538460e+03 8.260557e+03 [51] 7.789166e+03 7.624562e+03 7.552246e+03 7.371003e+03 7.249892e+03 [56] 7.170754e+03 7.143712e+03 7.041465e+03 7.019497e+03 6.918243e+03 [61] 6.725985e+03 6.635220e+03 6.610919e+03 6.600485e+03 6.378983e+03 [66] 6.255341e+03 6.252620e+03 5.944109e+03 5.890990e+03 5.875790e+03 [71] 5.812950e+03 5.786653e+03 5.754739e+03 5.743921e+03 5.729494e+03 [76] 5.588519e+03 5.558093e+03 5.511866e+03 5.447340e+03 5.436718e+03 [81] 5.390440e+03 5.389862e+03 5.351446e+03 5.323460e+03 5.231327e+03 [86] 5.154886e+03 5.146495e+03 5.103094e+03 5.062339e+03 5.016310e+03 [91] 5.007371e+03 5.003195e+03 4.987950e+03 4.984937e+03 4.971855e+03 [96] 4.963557e+03 4.913927e+03 4.891866e+03 4.845879e+03 4.841233e+03 [101] 4.807681e+03 4.789150e+03 4.768244e+03 4.752387e+03 4.685244e+03 [106] 4.667949e+03 4.662146e+03 4.655817e+03 4.615451e+03 4.542832e+03 [111] 4.463354e+03 4.448647e+03 4.420757e+03 4.393323e+03 4.368262e+03 [116] 4.330368e+03 4.322231e+03 4.280486e+03 4.269604e+03 4.266072e+03 [121] 4.227934e+03 4.210416e+03 4.197196e+03 4.169111e+03 4.168029e+03 [126] 4.145750e+03 4.137148e+03 4.117092e+03 4.102093e+03 4.031528e+03 [131] 3.997150e+03 3.989493e+03 3.960800e+03 3.954143e+03 3.921214e+03 [136] 3.892764e+03 3.861505e+03 3.831798e+03 3.821399e+03 3.816648e+03 [141] 3.813275e+03 3.797050e+03 3.788435e+03 3.765362e+03 3.753526e+03 [146] 3.750739e+03 3.717638e+03 3.704314e+03 3.700483e+03 3.683338e+03 [151] 3.669548e+03 3.651310e+03 3.645356e+03 3.636891e+03 3.634490e+03 [156] 3.631998e+03 3.598744e+03 3.578298e+03 3.577353e+03 3.492344e+03 [161] 3.457991e+03 3.438116e+03 3.401560e+03 3.398088e+03 3.390086e+03 [166] 3.362965e+03 3.328079e+03 3.306448e+03 3.289258e+03 3.283123e+03 [171] 3.268046e+03 3.254232e+03 3.238759e+03 3.176306e+03 3.173192e+03 [176] 3.145273e+03 3.132647e+03 3.124703e+03 3.116454e+03 3.028187e+03 [181] 3.026404e+03 3.003130e+03 2.985991e+03 2.952215e+03 2.946402e+03 [186] 2.937366e+03 2.902973e+03 2.867319e+03 2.855981e+03 2.843939e+03 [191] 2.830485e+03 2.788518e+03 2.761445e+03 2.753757e+03 2.752846e+03 [196] 2.725580e+03 2.723263e+03 2.669216e+03 2.640574e+03 2.545404e+03 [201] 2.543216e+03 2.508090e+03 2.486351e+03 2.465191e+03 2.447437e+03 [206] 2.431466e+03 2.424620e+03 2.423907e+03 2.399220e+03 2.369538e+03 [211] 2.305238e+03 2.261185e+03 2.252992e+03 2.171784e+03 2.169940e+03 [216] 2.127546e+03 2.094436e+03 2.074605e+03 2.056932e+03 2.053942e+03 [221] 2.011659e+03 1.993672e+03 1.934327e+03 1.893751e+03 1.848455e+03 [226] 1.838315e+03 1.763492e+03 1.728018e+03 1.726965e+03 1.623798e+03 [231] 1.617925e+03 1.554590e+03 1.498835e+03 1.421876e+03 1.256465e+03 [236] 1.200904e+03 1.118300e+03 1.101870e+03 1.055408e+03 9.238208e+02 [241] 8.125509e+02 7.031272e+02 6.943645e+02 6.338677e+02 5.772709e+02 [246] 5.077392e+02 4.566595e+02 4.025622e+02 3.118065e+02 3.043827e+02 [251] 2.412400e+02 2.386435e+02 1.395932e+02 1.225108e+02 1.084912e+02 [256] 9.846993e+01 8.964959e+01 8.446336e+01 2.486490e-05 5.362792e-11 [261] 9.161356e-12 9.161356e-12 9.161356e-12 9.161356e-12 9.161356e-12 [266] 9.161356e-12 9.161356e-12 9.161356e-12 9.161356e-12 Murray > On Sun, 9 Dec 2007, [EMAIL PROTECTED] wrote: > >> I tried crossprod(S) but the results were identical. The term >> -0.5*log(det(S)) is a complexity penalty meant to make it unattractive >> to >> include too many components in a finite mixture model. This case was for >> a >> 9-component mixture. At least up to 6 components the determinant behaved >> as expected and increased with the number of components. > > And the singular values were? > > I am not surprised at this: if you have too many components some of them > may not be contributing to the fit or duplicating others: both lead to > numerically singular information matrices. In many mixture-fitting > problems the log-likelihood is unbounded but with many local maxima: it is > very easy to find a poor one. > >> >> Thanks for your comments. >> >>> Hmm, S'S is numerically singular. crossprod(S) would be a better way >>> to >>> compute it than crossprod(S,S) (it does use a different algorithm), but >>> look at the singular values of S, which I suspect will show that S is >>> numerically singular. >>> >>> Looks like the answer is 0. >>> >>> >>> On Sun, 9 Dec 2007, [EMAIL PROTECTED] wrote: >>> >>>> I thought I would have another try at explaining my problem. I think >>>> that >>>> last time I may have buried it in irrelevant detail. >>>> >>>> This output should explain my dilemma: >>>> >>>>> dim(S) >>>> [1] 1455 269 >>>>> summary(as.vector(S)) >>>> Min. 1st Qu. Median Mean 3rd Qu. Max. >>>> -1.160e+04 0.000e+00 0.000e+00 -4.132e-08 0.000e+00 8.636e+03 >>>>> sum(as.vector(S)==0)/(1455*269) >>>> [1] 0.8451794 >>>> # S is a large moderately sparse matrix with some large elements >>>>> SS <- crossprod(S,S) >>>>> (eigen(SS,only.values = TRUE)$values)[250:269] >>>> [1] 9.264883e+04 5.819672e+04 5.695073e+04 1.948626e+04 >>>> 1.500891e+04 >>>> [6] 1.177034e+04 9.696327e+03 8.037049e+03 7.134058e+03 >>>> 1.316449e-07 >>>> [11] 9.077244e-08 6.417276e-08 5.046411e-08 1.998775e-08 >>>> -1.268081e-09 >>>> [16] -3.140881e-08 -4.478184e-08 -5.370730e-08 -8.507492e-08 >>>> -9.496699e-08 >>>> # S'S fails to be non-negative definite. >>>> >>>> I can't show you how to produce S easily but below I attempt at a >>>> reproducible version of the problem: >>>> >>>>> set.seed(091207) >>>>> X <- runif(1455*269,-1e4,1e4) >>>>> p <- rbinom(1455*269,1,0.845) >>>>> Y <- p*X >>>>> dim(Y) <- c(1455,269) >>>>> YY <- crossprod(Y,Y) >>>>> (eigen(YY,only.values = TRUE)$values)[250:269] >>>> [1] 17951634238 17928076223 17725528630 17647734206 17218470634 >>>> 16947982383 >>>> [7] 16728385887 16569501198 16498812174 16211312750 16127786747 >>>> 16006841514 >>>> [13] 15641955527 15472400630 15433931889 15083894866 14794357643 >>>> 14586969350 >>>> [19] 14297854542 13986819627 >>>> # No sign of negative eigenvalues; phenomenon must be due >>>> # to special structure of S. >>>> # S is a matrix of empirical parameter scores at an approximate >>>> # mle for a model with 269 paramters fitted to 1455 observations. >>>> # Thus, for example, its column sums are approximately zero: >>>>> summary(apply(S,2,sum)) >>>> Min. 1st Qu. Median Mean 3rd Qu. Max. >>>> -1.148e-03 -2.227e-04 -7.496e-06 -6.011e-05 7.967e-05 8.254e-04 >>>> >>>> I'm starting to think that it may not be a good idea to attempt to >>>> compute >>>> large information matrices and their determinants! >>>> >>>> Murray Jorgensen >>>> >>>> ______________________________________________ >>>> R-help@r-project.org mailing list >>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>> PLEASE do read the posting guide >>>> http://www.R-project.org/posting-guide.html >>>> and provide commented, minimal, self-contained, reproducible code. >>>> >>> >>> -- >>> Brian D. Ripley, [EMAIL PROTECTED] >>> Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ >>> University of Oxford, Tel: +44 1865 272861 (self) >>> 1 South Parks Road, +44 1865 272866 (PA) >>> Oxford OX1 3TG, UK Fax: +44 1865 272595 >>> >>> >> >> > > -- > Brian D. Ripley, [EMAIL PROTECTED] > Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ > University of Oxford, Tel: +44 1865 272861 (self) > 1 South Parks Road, +44 1865 272866 (PA) > Oxford OX1 3TG, UK Fax: +44 1865 272595 > > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.