The risugen_x86.pm module contains most of the code specific to Intel i386 and x86_64 architectures. This commit also adds --x86_64 option, which enables emission of 64-bit (rather than 32-bit) assembly.
Signed-off-by: Jan Bobek <jan.bo...@gmail.com> --- risugen | 6 +- risugen_x86.pm | 498 +++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 503 insertions(+), 1 deletion(-) create mode 100644 risugen_x86.pm diff --git a/risugen b/risugen index fe3d00e..09a702a 100755 --- a/risugen +++ b/risugen @@ -310,6 +310,7 @@ Valid options: Useful to test before support for FP is available. --sve : enable sve floating point --be : generate instructions in Big-Endian byte order (ppc64 only). + --x86_64 : generate 64-bit (rather than 32-bit) x86 code. --help : print this message EOT } @@ -322,6 +323,7 @@ sub main() my $fp_enabled = 1; my $sve_enabled = 0; my $big_endian = 0; + my $is_x86_64 = 0; my ($infile, $outfile); GetOptions( "help" => sub { usage(); exit(0); }, @@ -338,6 +340,7 @@ sub main() }, "be" => sub { $big_endian = 1; }, "no-fp" => sub { $fp_enabled = 0; }, + "x86_64" => sub { $is_x86_64 = 1; }, "sve" => sub { $sve_enabled = 1; }, ) or return 1; # allow "--pattern re,re" and "--pattern re --pattern re" @@ -372,7 +375,8 @@ sub main() 'keys' => \@insn_keys, 'arch' => $full_arch[0], 'subarch' => $full_arch[1] || '', - 'bigendian' => $big_endian + 'bigendian' => $big_endian, + 'x86_64' => $is_x86_64 ); write_test_code(\%params); diff --git a/risugen_x86.pm b/risugen_x86.pm new file mode 100644 index 0000000..fd16c45 --- /dev/null +++ b/risugen_x86.pm @@ -0,0 +1,498 @@ +#!/usr/bin/perl -w +############################################################################### +# Copyright (c) 2019 Linaro Limited +# All rights reserved. This program and the accompanying materials +# are made available under the terms of the Eclipse Public License v1.0 +# which accompanies this distribution, and is available at +# http://www.eclipse.org/legal/epl-v10.html +# +# Contributors: +# Jan Bobek - initial implementation +############################################################################### + +# risugen_x86 -- risugen module for Intel i386/x86_64 architectures +package risugen_x86; + +use strict; +use warnings; + +use risugen_common; +use risugen_x86_asm; +use risugen_x86_emit; + +require Exporter; + +our @ISA = qw(Exporter); +our @EXPORT = qw(write_test_code); + +use constant { + RISUOP_COMPARE => 0, # compare registers + RISUOP_TESTEND => 1, # end of test, stop + RISUOP_SETMEMBLOCK => 2, # eax is address of memory block (8192 bytes) + RISUOP_GETMEMBLOCK => 3, # add the address of memory block to eax + RISUOP_COMPAREMEM => 4, # compare memory block + + # Maximum alignment restriction permitted for a memory op. + MAXALIGN => 64, + MEMBLOCK_LEN => 8192, +}; + +my $periodic_reg_random = 1; +my $is_x86_64 = 0; + +sub write_risuop($) +{ + my ($op) = @_; + + write_insn(opcode => X86OP_UD1, + modrm => {mod => MOD_DIRECT, + reg => REG_EAX, + rm => $op}); +} + +sub write_mov_rr($$) +{ + my ($r1, $r2) = @_; + + my %insn = (opcode => X86OP_MOV, + modrm => {mod => MOD_DIRECT, + reg => ($r1 & 0x7), + rm => ($r2 & 0x7)}); + + $insn{rex}{w} = 1 if $is_x86_64; + $insn{rex}{r} = 1 if $r1 >= 8; + $insn{rex}{b} = 1 if $r2 >= 8; + + write_insn(%insn); +} + +sub write_mov_reg_imm($$) +{ + my ($reg, $imm) = @_; + my %insn; + + if (0 <= $imm && $imm <= 0xffffffff) { + %insn = (opcode => {value => 0xB8 | ($reg & 0x7), len => 1}, + imm => {value => $imm, len => 4}); + } elsif (-0x80000000 <= $imm && $imm <= 0x7fffffff) { + %insn = (opcode => {value => 0xC7, len => 1}, + modrm => {mod => MOD_DIRECT, + reg => 0, rm => ($reg & 0x7)}, + imm => {value => $imm, len => 4}); + + $insn{rex}{w} = 1 if $is_x86_64; + } else { + %insn = (rex => {w => 1}, + opcode => {value => 0xB8 | ($reg & 0x7), len => 1}, + imm => {value => $imm, len => 8}); + } + + $insn{rex}{b} = 1 if $reg >= 8; + write_insn(%insn); +} + +sub write_random_regdata() +{ + my $reg_cnt = $is_x86_64 ? 16 : 8; + my $bitlen = $is_x86_64 ? 64 : 32; + + # initialize flags register + write_insn(opcode => X86OP_XOR, + modrm => {mod => MOD_DIRECT, + reg => REG_EAX, + rm => REG_EAX}); + write_insn(opcode => X86OP_SAHF); + + # general purpose registers + for (my $reg = 0; $reg < $reg_cnt; $reg++) { + if ($reg != REG_ESP) { + my $imm = randint_constr(bitlen => $bitlen, signed => 1); + write_mov_reg_imm($reg, $imm); + } + } +} + +sub write_random_datablock($) +{ + my ($datalen) = @_; + + # Write a block of random data, $datalen bytes long, aligned + # according to MAXALIGN, and load its address into EAX/RAX. + + $datalen += MAXALIGN - 1; + + # First, load current EIP/RIP into EAX/RAX. Easy to do on x86_64 + # thanks to RIP-relative addressing, but on i386 we need to play + # some well-known tricks with CALL instruction. + if ($is_x86_64) { + # 4-byte AND + 5-byte JMP + my $disp32 = 4 + 5 + (MAXALIGN - 1); + my $reg = REG_EAX; + + write_insn(rex => {w => 1}, + opcode => X86OP_LEA, + modrm => {mod => MOD_INDIRECT, + reg => $reg, rm => REG_EBP}, + disp => {value => $disp32, len => 4}); + + write_insn(rex => {w => 1}, + opcode => X86OP_ALU_imm8, + modrm => {mod => MOD_DIRECT, + reg => 4, rm => $reg}, + imm => {value => ~(MAXALIGN - 1), + len => 1}); + + } else { + # 1-byte POP + 3-byte ADD + 3-byte AND + 5-byte JMP + my $imm8 = 1 + 3 + 3 + 5 + (MAXALIGN - 1); + my $reg = REG_EAX; + + # displacement = next instruction + write_insn(opcode => X86OP_CALL, + imm => {value => 0x00000000, len => 4}); + + write_insn(opcode => {value => 0x58 | ($reg & 0x7), + len => 1}); + + write_insn(opcode => X86OP_ALU_imm8, + modrm => {mod => MOD_DIRECT, + reg => 0, rm => $reg}, + imm => {value => $imm8, len => 1}); + + write_insn(opcode => X86OP_ALU_imm8, + modrm => {mod => MOD_DIRECT, + reg => 4, rm => $reg}, + imm => {value => ~(MAXALIGN - 1), + len => 1}); + } + + # JMP over the data blob. + write_insn(opcode => X86OP_JMP, + imm => {value => $datalen, len => 4}); + + # Generate the random data + for (my $w = 8; 0 < $w; $w /= 2) { + for (; $w <= $datalen; $datalen -= $w) { + insnv(%{rand_insn_imm(size => $w)}); + } + } +} + +sub write_random_ymmdata() +{ + my $ymm_cnt = $is_x86_64 ? 16 : 8; + my $ymm_len = 32; + my $datalen = $ymm_cnt * $ymm_len; + + # Generate random data blob + write_random_datablock($datalen); + + # Load the random data into YMM regs. + for (my $ymm_reg = 0; $ymm_reg < $ymm_cnt; $ymm_reg++) { + write_insn(vex => {l => VEX_L_256, p => VEX_P_DATA16, + r => !($ymm_reg >= 8)}, + opcode => X86OP_VMOVAPS, + modrm => {mod => MOD_INDIRECT_DISP32, + reg => ($ymm_reg & 0x7), + rm => REG_EAX}, + disp => {value => $ymm_reg * $ymm_len, + len => 4}); + } +} + +sub write_memblock_setup() +{ + # Generate random data blob + write_random_datablock(MEMBLOCK_LEN); + # Pointer is in EAX/RAX; set the memblock + write_risuop(RISUOP_SETMEMBLOCK); +} + +sub write_random_register_data() +{ + write_random_ymmdata(); + write_random_regdata(); + write_risuop(RISUOP_COMPARE); +} + +sub rand_insn_imm(%) +{ + my (%args) = @_; + + return { + value => randint_constr(bitlen => ($args{size} * 8), signed => 1), + len => $args{size} + }; +} + +sub rand_insn_opcode($) +{ + # Given an instruction-details array, generate an instruction + my ($rec) = @_; + my $insnname = $rec->{name}; + my $insnwidth = $rec->{width}; + + my $constraintfailures = 0; + + INSN: while(1) { + my $opcode = randint_constr(bitlen => 32, + fixedbits => $rec->{fixedbits}, + fixedbitmask => $rec->{fixedbitmask}); + + my $constraint = $rec->{blocks}{"constraints"}; + if (defined $constraint) { + # user-specified constraint: evaluate in an environment + # with variables set corresponding to the variable fields. + my $v = eval_with_fields($insnname, $opcode, $rec, "constraints", $constraint); + if (!$v) { + $constraintfailures++; + if ($constraintfailures > 10000) { + print "10000 consecutive constraint failures for $insnname constraints string:\n$constraint\n"; + exit (1); + } + next INSN; + } + } + + # OK, we got a good one + $constraintfailures = 0; + + return { + value => $opcode >> (32 - $insnwidth), + len => $insnwidth / 8 + }; + } +} + +sub rand_insn_modrm($$) +{ + my ($opts, $insn) = @_; + my $modrm; + + while (1) { + $modrm = rand_fill({mod => {bitlen => 2}, + reg => {bitlen => 3}, + rm => {bitlen => 3}}, + $opts); + + if ($modrm->{mod} != MOD_DIRECT) { + # Displacement only; we cannot use this since we + # don't know absolute address of the memblock. + next if $modrm->{mod} == MOD_INDIRECT && $modrm->{rm} == REG_EBP; + + if ($modrm->{rm} == REG_ESP) { + # SIB byte present + my $sib = rand_fill({ss => {bitlen => 2}, + index => {bitlen => 3}, + base => {bitlen => 3}}, {}); + + # We cannot modify ESP/RSP during the tests + next if $sib->{base} == REG_ESP; + + # When base and index register are the same, + # computing the correct memblock addresses and + # offsets gets way too complicated... + next if $sib->{base} == $sib->{index}; + + # No base register + next if $modrm->{mod} == MOD_INDIRECT && $sib->{base} == REG_EBP; + + $insn->{sib} = $sib; + } + + $insn->{disp} = rand_insn_imm(size => 1) + if $modrm->{mod} == MOD_INDIRECT_DISP8; + + $insn->{disp} = rand_insn_imm(size => 4) + if $modrm->{mod} == MOD_INDIRECT_DISP32; + } + + $insn->{modrm} = $modrm; + last; + } +} + +sub rand_insn_rex($$) +{ + my ($opts, $insn) = @_; + + $opts->{w} = 0 unless defined $opts->{w}; + $opts->{x} = 0 unless defined $opts->{x} || defined $insn->{sib}; + + my $rex = rand_fill({w => {bitlen => 1}, + r => {bitlen => 1}, + b => {bitlen => 1}, + x => {bitlen => 1}}, + $opts); + + $insn->{rex} = $rex + if $rex->{w} || $rex->{r} || $rex->{b} || $rex->{x}; +} + +sub rand_insn_vex($$) +{ + my ($opts, $insn) = @_; + my $vex; + + $opts->{r} = 1 unless $is_x86_64; + $opts->{x} = 1 unless $is_x86_64 && (defined $opts->{x} || defined $insn->{sib}); + $opts->{b} = 1 unless $is_x86_64; + $opts->{p} = 0 unless defined $opts->{p}; + + $vex->{r} = {bitlen => 1}; + $vex->{v} = {bitlen => 4}; + $vex->{l} = {bitlen => 1}; + $vex->{p} = {bitlen => 2}; + + # Note that VEX.X, VEX.B, VEX.M and VEX.W are only present in the + # 3-byte VEX prefix. Since VEX.M is an extension of opcode, it + # makes no sense to randomize it; therefore, we can only include + # VEX.X, VEX.B and VEX.W if we are given a meaningful value for + # VEX.M. + if (defined $opts->{m}) { + $vex->{x} = {bitlen => 1}; + $vex->{b} = {bitlen => 1}; + $vex->{m} = {bitlen => 5}; + $vex->{w} = {bitlen => 1}; + } + + $insn->{vex} = rand_fill($vex, $opts); +} + +sub write_mem_getoffset($$) +{ + my ($opts, $insn) = @_; + my $offset, my $index; + + $opts->{size} = 0 unless defined $opts->{size}; + $opts->{align} = 1 unless defined $opts->{align}; + + if (!defined $opts->{base} + && defined $insn->{modrm} + && $insn->{modrm}{mod} != MOD_DIRECT) { + + $opts->{base} = (defined $insn->{sib} + ? $insn->{sib}{base} + : $insn->{modrm}{rm}); + + if ($insn->{modrm}{mod} == MOD_INDIRECT && $opts->{base} == REG_EBP) { + delete $opts->{base}; # No base register + } else { + $opts->{base} |= $insn->{rex}{b} << 3 if defined $insn->{rex}; + $opts->{base} |= (!$insn->{vex}{b}) << 3 if defined $insn->{vex}; + } + } + + if (!defined $opts->{index} && defined $insn->{sib}) { + $opts->{index} = $insn->{sib}{index}; + $opts->{index} |= $insn->{rex}{x} << 3 if defined $insn->{rex}; + $opts->{index} |= (!$insn->{vex}{x}) << 3 if defined $insn->{vex}; + delete $opts->{index} if $opts->{index} == REG_ESP; # ESP means "none" + } + + $opts->{ss} = $insn->{sib}{ss} if !defined $opts->{ss} && defined $insn->{sib}; + $opts->{disp} = $insn->{disp} if !defined $opts->{disp} && defined $insn->{disp}; + + $offset = int(rand(MEMBLOCK_LEN - $opts->{size})); + $offset &= ~($opts->{align} - 1); + + $offset -= $opts->{disp}{value} if defined $opts->{disp}; + + if (defined $opts->{index}) { + $index = randint_constr(bitlen => 32, signed => 1); + $offset -= $index * (1 << $opts->{ss}); + } + + if (defined $opts->{base} && defined $offset) { + write_mov_reg_imm(REG_EAX, $offset); + write_risuop(RISUOP_GETMEMBLOCK); + write_mov_rr($opts->{base}, REG_EAX); + } + if (defined $opts->{index} && defined $index) { + write_mov_reg_imm($opts->{index}, $index); + } +} + +sub gen_one_insn($) +{ + my ($rec) = @_; + my $insn; + + $insn->{opcode} = rand_insn_opcode($rec); + my $opts = parse_emitblock($rec, $insn); + + # Operation with a ModR/M byte can potentially use a memory + # operand + $opts->{mem} = {} + unless (defined $opts->{mem} + || !defined $opts->{modrm}); + + # If none of REX/VEX/EVEX are specified, default to REX + $opts->{rex} = {} + unless (defined $opts->{rex} + || defined $opts->{vex} + || defined $opts->{evex} + || !defined $opts->{modrm}); + + # REX requires x86_64 + delete $opts->{rex} + unless $is_x86_64; + + $insn->{rep} = $opts->{rep} if defined $opts->{rep}; + $insn->{repne} = $opts->{repne} if defined $opts->{repne}; + $insn->{data16} = $opts->{data16} if defined $opts->{data16}; + + rand_insn_modrm($opts->{modrm}, $insn) if defined $opts->{modrm}; + + rand_insn_vex($opts->{vex}, $insn) if defined $opts->{vex}; + # TODO rand_insn_evex($opts->{evex}, $insn) if defined $opts->{evex}; + rand_insn_rex($opts->{rex}, $insn) if defined $opts->{rex}; + + $insn->{imm} = rand_insn_imm(%{$opts->{imm}}) if defined $opts->{imm}; + + write_mem_getoffset($opts->{mem}, $insn); + write_insn(%{$insn}); +} + +sub write_test_code($) +{ + my ($params) = @_; + + my $numinsns = $params->{ 'numinsns' }; + my $outfile = $params->{ 'outfile' }; + + my %insn_details = %{ $params->{ 'details' } }; + my @keys = @{ $params->{ 'keys' } }; + + $is_x86_64 = $params->{ 'x86_64' }; + + open_bin($outfile); + + # TODO better random number generator? + srand(0); + + print "Generating code using patterns: @keys...\n"; + progress_start(78, $numinsns); + + write_memblock_setup(); + + # memblock setup doesn't clean its registers, so this must come afterwards. + write_random_register_data(); + + for my $i (1..$numinsns) { + my $insn_enc = $keys[int rand (@keys)]; + gen_one_insn($insn_details{$insn_enc}); + write_risuop(RISUOP_COMPARE); + # Rewrite the registers periodically. This avoids the tendency + # for the VFP registers to decay to NaNs and zeroes. + if ($periodic_reg_random && ($i % 100) == 0) { + write_random_register_data(); + } + progress_update($i); + } + write_risuop(RISUOP_TESTEND); + progress_end(); + close_bin(); +} + +1; -- 2.20.1