CODE: for nii in os.listdir("c:/users/administrator/desktop/nii"):
from nilearn import plotting from nilearn import datasets atlas = datasets.fetch_atlas_msdl() # Loading atlas image stored in 'maps' atlas_filename = "C:/Users/Administrator/Desktop/64/64/2mm/maps.nii.gz" # Loading atlas data stored in 'labels' labels = pd.read_csv( "C:/Users/Administrator/Desktop/64/64/labels_64_dictionary.csv") a=labels.to_dict() b=a["Difumo_names"] from nilearn.maskers import NiftiMapsMasker masker = NiftiMapsMasker(maps_img=atlas_filename, standardize=True, memory='nilearn_cache', verbose=5) time_series = masker.fit_transform("c:/users/administrator/desktop/nii/" +nii) try: from sklearn.covariance import GraphicalLassoCV except ImportError: # for Scitkit-Learn < v0.20.0 from sklearn.covariance import GraphLassoCV as GraphicalLassoCV estimator = GraphicalLassoCV() estimator.fit(time_series) # Display the covariancec aas={} jsa=0 for i in estimator.covariance_: r=list(a["Difumo_names"].values())[jsa] jsa=jsa+1 a=dict() for x in range(64): g=list(a["Difumo_names"].values())[x] print(aas) t= nilearn.plotting.plot_img(estimator.covariance_, labels=list(a[ "Difumo_names"].values()), figure=(9, 7), vmax=1, vmin=-1, title='Covariance')# The covariance can be found at estimator.covariance_ # The covariance can be found at estimator.covariance_ t2= nilearn.plotting.plot_matrix(estimator.covariance_, labels=list(a[ "Difumo_names"].values()), figure=(9, 7), vmax=1, vmin=-1, title='Covariance') -- <https://netanel.ml> -- https://mail.python.org/mailman/listinfo/python-list