Hi, Peter, Thank you for the great suggestion. I tried to implement you code but failed.
Here's what I have: class FileReader: def __init__(self, filename, isSkip): self.path = filename self.isSkip = isSkip @contextmanager def open(*args): from StringIO import StringIO lines = range(10) if self.isSkip: lines[0] = "skipped" lines[6] = "field1-from-line6,field2-from-line6" else: lines[0] = "field1-from-line1,field2-from-line1" yield StringIO("\r\n".join(map(str, lines))) def is_arbitrary_text(self,fieldnames): return "skipped" in fieldnames def readData(self): with self.open(self.path, "r") as f: reader = csv.DictReader(f) if self.is_arbitrary_text(reader.fieldnames): for _ in range(5): next(reader, None) reader._fieldnames = None for row in reader: print row Unfortunately this does not work as "def open()" does not belong to my class and if I comment the "@contextmanager" line I will get an exception: "AttributeError: __exit__" Any idea what to do? Thank you. On Tue, Dec 17, 2013 at 2:51 AM, Peter Otten <__pete...@web.de> wrote: > Igor Korot wrote: > >> Hi, guys, >> >> On Tue, Dec 17, 2013 at 12:55 AM, Peter Otten <__pete...@web.de> wrote: >>> Peter Otten wrote: >>> >>>> You are still reading the complete csv file. Assuming >>>> >>>> (1) the first row of the csv contains the column names >>>> (2) you want to skip the first five rows of data >> >> Looking at the Peter's reply I realized I missed very important piece: >> >> The first row may or may not contain column names. >> If it does not, the first row will just contain some text, i.e. "abc" >> and the column names will be located on the row 6. >> >> I know if does complicate things but I am deeply sorry. >> The csv file is generated by some program run and I guess depending on >> the switches passed to >> that program it either creates the header in the csv (report name, >> time slice it ran at, user it ran under >> and some other info. >> Or it can be run without such switch and then it generates a normal csv. >> >> The report it generates is huge: it has about 30+ fields and I need to >> read this report, parse it and >> push accordingly to the database of mySQL. >> >> Thank you for any suggestions and sorry for not posting complete task. > > Try the following (without the mock-ups of course): > > > $ cat csv_skip_header.py > import csv > import sys > from contextlib import contextmanager > > filename = "ignored" > > @contextmanager > def open(*args): > "mock-up, replace with open() built-in" > from StringIO import StringIO > lines = range(10) > if len(sys.argv) > 1 and sys.argv[1] == "--skip": > lines[0] = "skipped" > lines[6] = "field1-from-line6,field2-from-line6" > else: > lines[0] = "field1-from-line1,field2-from-line1" > yield StringIO("\r\n".join(map(str, lines))) > > def is_arbitrary_text(fieldnames): > "mock-up, replace with the actual check" > return "skipped" in fieldnames > > with open(filename, "rb") as f: > reader = csv.DictReader(f) > if is_arbitrary_text(reader.fieldnames): > for _ in range(5): > next(reader, None) > reader._fieldnames = None # underscore necessary, > # fieldnames setter doesn't work > reader.fieldnames # used for its side-effect > for row in reader: > print row > $ python csv_skip_header.py > {'field2-from-line1': None, 'field1-from-line1': '1'} > {'field2-from-line1': None, 'field1-from-line1': '2'} > {'field2-from-line1': None, 'field1-from-line1': '3'} > {'field2-from-line1': None, 'field1-from-line1': '4'} > {'field2-from-line1': None, 'field1-from-line1': '5'} > {'field2-from-line1': None, 'field1-from-line1': '6'} > {'field2-from-line1': None, 'field1-from-line1': '7'} > {'field2-from-line1': None, 'field1-from-line1': '8'} > {'field2-from-line1': None, 'field1-from-line1': '9'} > $ python csv_skip_header.py --skip > {'field1-from-line6': '7', 'field2-from-line6': None} > {'field1-from-line6': '8', 'field2-from-line6': None} > {'field1-from-line6': '9', 'field2-from-line6': None} > > You may find the following a bit cleaner: > > with open(filename, "rb") as f: > reader = csv.reader(f) > fieldnames = next(reader) > if is_arbitrary_text(fieldnames): > for _ in range(5): > next(reader, None) > fieldnames = None > reader = csv.DictReader(f, fieldnames=fieldnames) > for row in reader: > print row > > Or you do the skipping on the file (only if the rows don't have embedded > newlines). > > -- > https://mail.python.org/mailman/listinfo/python-list -- https://mail.python.org/mailman/listinfo/python-list