Igor Korot wrote: > Hi, guys, > > On Tue, Dec 17, 2013 at 12:55 AM, Peter Otten <__pete...@web.de> wrote: >> Peter Otten wrote: >> >>> You are still reading the complete csv file. Assuming >>> >>> (1) the first row of the csv contains the column names >>> (2) you want to skip the first five rows of data > > Looking at the Peter's reply I realized I missed very important piece: > > The first row may or may not contain column names. > If it does not, the first row will just contain some text, i.e. "abc" > and the column names will be located on the row 6. > > I know if does complicate things but I am deeply sorry. > The csv file is generated by some program run and I guess depending on > the switches passed to > that program it either creates the header in the csv (report name, > time slice it ran at, user it ran under > and some other info. > Or it can be run without such switch and then it generates a normal csv. > > The report it generates is huge: it has about 30+ fields and I need to > read this report, parse it and > push accordingly to the database of mySQL. > > Thank you for any suggestions and sorry for not posting complete task.
Try the following (without the mock-ups of course): $ cat csv_skip_header.py import csv import sys from contextlib import contextmanager filename = "ignored" @contextmanager def open(*args): "mock-up, replace with open() built-in" from StringIO import StringIO lines = range(10) if len(sys.argv) > 1 and sys.argv[1] == "--skip": lines[0] = "skipped" lines[6] = "field1-from-line6,field2-from-line6" else: lines[0] = "field1-from-line1,field2-from-line1" yield StringIO("\r\n".join(map(str, lines))) def is_arbitrary_text(fieldnames): "mock-up, replace with the actual check" return "skipped" in fieldnames with open(filename, "rb") as f: reader = csv.DictReader(f) if is_arbitrary_text(reader.fieldnames): for _ in range(5): next(reader, None) reader._fieldnames = None # underscore necessary, # fieldnames setter doesn't work reader.fieldnames # used for its side-effect for row in reader: print row $ python csv_skip_header.py {'field2-from-line1': None, 'field1-from-line1': '1'} {'field2-from-line1': None, 'field1-from-line1': '2'} {'field2-from-line1': None, 'field1-from-line1': '3'} {'field2-from-line1': None, 'field1-from-line1': '4'} {'field2-from-line1': None, 'field1-from-line1': '5'} {'field2-from-line1': None, 'field1-from-line1': '6'} {'field2-from-line1': None, 'field1-from-line1': '7'} {'field2-from-line1': None, 'field1-from-line1': '8'} {'field2-from-line1': None, 'field1-from-line1': '9'} $ python csv_skip_header.py --skip {'field1-from-line6': '7', 'field2-from-line6': None} {'field1-from-line6': '8', 'field2-from-line6': None} {'field1-from-line6': '9', 'field2-from-line6': None} You may find the following a bit cleaner: with open(filename, "rb") as f: reader = csv.reader(f) fieldnames = next(reader) if is_arbitrary_text(fieldnames): for _ in range(5): next(reader, None) fieldnames = None reader = csv.DictReader(f, fieldnames=fieldnames) for row in reader: print row Or you do the skipping on the file (only if the rows don't have embedded newlines). -- https://mail.python.org/mailman/listinfo/python-list