Steven D'Aprano wrote: > In any case, sorting in Python is amazingly fast. You may be pleasantly > surprised that a version that sorts your data, while nominally > O(N log N), may be much faster than an O(N) solution that doesn't require > sorted data. If I were a betting man, I'd be willing to wager a shiny new > dollar[1] that sorting works out faster for reasonable sized sets of data.
Well, that was my first reaction, too. But then $ cat keyminmax.py import operator import itertools import collections def minmax_groupby(items): for key, group in itertools.groupby(sorted(items), key=operator.itemgetter(0)): minpair = maxpair = next(group) for maxpair in group: pass yield key, minpair[1], maxpair[1] def minmax_dict(items): d = collections.defaultdict(list) for key, value in items: d[key].append(value) for key, values in d.items(): yield key, min(values), max(values) a = [(52, 193), (52, 193), (52, 192), (51, 193), (51, 191), (51, 190), (51, 189), (51, 188), (50, 194), (50, 187),(50, 186), (50, 185), (50, 184), (49, 194), (49, 183), (49, 182), (49, 181), (48, 194), (48, 180), (48, 179), (48, 178), (48, 177), (47, 194), (47, 176), (47, 175), (47, 174), (47, 173), (46, 195), (46, 172), (46, 171), (46, 170), (46, 169), (45, 195), (45, 168), (45, 167), (45, 166), (44, 195), (44, 165), (44, 164), (44, 163), (44, 162), (43, 195), (43, 161), (43, 160), (43, 159), (43, 158), (42, 196), (42, 157), (42, 156), (42, 155), (41, 196), (41, 154), (41, 153), (41, 152), (41, 151), (40, 196), (40, 150), (40, 149), (40, 148), (40, 147), (39, 196), (39, 146), (39, 145), (39, 144), (39, 143), (38, 196), (38, 142), (38, 141), (38, 140), (37, 197), (37, 139), (37, 138), (37, 137), (37, 136), (36, 197), (36, 135), (36, 134), (36, 133)] from collections import deque from itertools import groupby from operator import itemgetter def collect(data): data = sorted(data) groups = groupby(data, itemgetter(0)) d = deque([], maxlen=1) for key, subiter in groups: smallest = largest = next(subiter)[1] d.extend(subiter) try: largest = d.pop()[1] except IndexError: pass yield (key, smallest, largest) def time_dict(): for item in minmax_dict(a): pass def time_groupby(): for item in minmax_groupby(a): pass def time_daprano(): for item in collect(a): pass $ python -m timeit -s 'from keyminmax import time_groupby as t' 't()' 10000 loops, best of 3: 68.6 usec per loop $ python -m timeit -s 'from keyminmax import time_dict as t' 't()' 10000 loops, best of 3: 53.3 usec per loop $ python -m timeit -s 'from keyminmax import time_daprano as t' 't()' 10000 loops, best of 3: 75.7 usec per loop So yes, sorting seems to be slower even for small datasets. -- https://mail.python.org/mailman/listinfo/python-list