On Thursday, November 21, 2013 5:01:15 AM UTC-8, John O'Hagan wrote:
> On Thu, 21 Nov 2013 11:42:49 +0000
> 
> Oscar Benjamin  wrote:
> 
> 
> 
> > On 21 November 2013 06:46, John O'Hagan 
> 
> > wrote:
> 
> > >
> 
> > > I found a verbal description of such an algorithm and came up with
> 
> > > this:
> 
> > >
> 
> > > def multicombs(it, r):
> 
> > >     result = it[:r]
> 
> > >     yield result
> 
> > >     while 1:
> 
> > >         for i in range(-1, -r - 1, -1):
> 
> > >             rep = result[i]
> 
> > >             if rep < it[i]:
> 
> > >                 break
> 
> > >         else:
> 
> > >             break
> 
> > >         for j, n in enumerate(it):
> 
> > >             if n > rep:
> 
> > >                 break
> 
> > >         result = result[:i] + it[j:j - i]
> 
> > >         yield result
> 
> > 
> 
> > I'm not really sure what it is you're asking for. I thought if I ran
> 
> > the code I'd understand but that just confused me more. Is the output
> 
> > below correct? If not what should it be?
> 
> > 
> 
> > multicombs("abracadabra", 0)
> 
> > ['']
> 
> > multicombs("abracadabra", 1)
> 
> > ['a']
> 
> > multicombs("abracadabra", 2)
> 
> > ['ab', 'br', 'ra']
> 
> > multicombs("abracadabra", 3)
> 
> > ['abr', 'ara', 'bra']
> 
> > multicombs("abracadabra", 4)
> 
> > ['abra']
> 
> > multicombs("abracadabra", 5)
> 
> > ['abrac', 'abrbr', 'abrra', 'braca', 'brara', 'brbra', 'racad',
> 
> > 'racbr', 'racra']
> 
> 
> 
> 
> 
> I neglected to mention that multicombs takes a sorted iterable;
> 
> it doesn't work right otherwise. I'd forgotten that because my
> 
> wordlists are guaranteed sorted by the way they're built. Sorry about
> 
> that.
> 
> 
> 
> In my use-case the first argument to multicombs is a tuple of words
> 
> which may contain duplicates, and it produces all unique combinations
> 
> of a certain length of those words, eg:
> 
> 
> 
> list(multicombs(('cat', 'hat', 'in', 'the', 'the'), 3))
> 
> 
> 
> [('cat', 'hat', 'in'), ('cat', 'hat', 'the'), ('cat', 'in', 'the'),
> 
> ('cat', 'the', 'the'), ('hat', 'in', 'the'), ('hat', 'the', 'the'),
> 
> ('in', 'the', 'the')]
> 
> 
> 
> Contrast this with: 
> 
> 
> 
> list(itertools.combinations(('cat', 'hat', 'in', 'the', 'the'), 3))
> 
> 
> 
> [('cat', 'hat', 'in'), ('cat', 'hat', 'the'), ('cat', 'hat', 'the'),
> 
> ('cat', 'in', 'the'), ('cat', 'in', 'the'), ('cat', 'the', 'the'),
> 
> ('hat', 'in', 'the'), ('hat', 'in', 'the'), ('hat', 'the', 'the'),
> 
> ('in', 'the', 'the')]
> 
> 
> 
> which produces results which are redundant for my purposes.
> 
> 
> 
> What I'm looking for is a recursive algorithm which does what
> 
> multicombs does (order unimportant) so that I can apply a pruning
> 
> shortcut like the one I used in the recursive cartesian product
> 
> algorithm in my original post.
> 
> 
> 
> Multiset combination algorithms seem pretty thin on the ground out
> 
> there - as I said, I could only find a description of the procedure
> 
> above, no actual code. The ones I did find are non-recursive. I'm
> 
> hoping some combinatorics and/or recursion experts can offer advice. 
> 
> 
> 
> Regards,
> 
> 
> 
> --
> 
> 
> 
> John

Could convert the following perl script to python?

use Data::Dump qw(dump);
dump combo([@ARGV], 3);

sub combo {
my ($t, $k) = @_;
my @T = @$t;
my @R = ();
my %g = ();
if ($k == 1) {
        for (@T) {
                push @R, $_ unless $g{$_}++;
        }
} else {
        while (my $x = shift @T) {
        $p = combo([@T], $k-1);
        for (@{$p}) {
                my $q = $x.",".$_;
                push @R, $q unless $g{$q}++;
        }
        }
}
[@R];
}

$ prog.pl cat hat in the the
[
  "cat,hat,in",
  "cat,hat,the",
  "cat,in,the",
  "cat,the,the",
  "hat,in,the",
  "hat,the,the",
  "in,the,the",
]

James
-- 
https://mail.python.org/mailman/listinfo/python-list

Reply via email to