Mark Dickinson <dicki...@gmail.com> added the comment:

If you want to be able to switch to something more efficient for large `n`, 
Knuth describes a simple O(log(n)) algorithm in TAOCP volume 4 (and attributes 
it to J. H. Ahrens). It's essentially a bisection search on the value, using 
the fact that we can use the beta distribution to generate order statistics. 
Here's a (too) simple Python implementation. It still needs thorough testing, 
and could be optimised in many ways - e.g., using sensible crossover point for 
n and not recursing all the way to n = 0.


    def binomialvariate(n, p):
        if n == 0:
            return 0
        a, b = (1 + n)//2, 1 + n//2
        x = betavariate(a, b)
        if x < p:
            return a + binomialvariate(b - 1, (p - x)/(1 - x))
        else:
            return binomialvariate(a - 1, p/x)


>>> binomialvariate(10**10, 0.5)
4999944649

----------

_______________________________________
Python tracker <rep...@bugs.python.org>
<https://bugs.python.org/issue37439>
_______________________________________
_______________________________________________
Python-bugs-list mailing list
Unsubscribe: 
https://mail.python.org/mailman/options/python-bugs-list/archive%40mail-archive.com

Reply via email to