Hi,

after a bit more time spent on this, I found that the issue is due to
this chunk of code in

    if (heapSort)
    {
        if (tuplesPerPrevGroup < output_tuples)
            /* comparing only inside output_tuples */
            correctedNGroups =
                ceil(2.0 * output_tuples /
                     (tuplesPerPrevGroup / nGroups));
        else
            /* two groups - in output and out */
            correctedNGroups = 2.0;
    }
    else
        correctedNGroups = nGroups;

    if (correctedNGroups <= 1.0)
        correctedNGroups = 2.0;
    else
        correctedNGroups = ceil(correctedNGroups);
    per_tuple_cost += totalFuncCost * LOG2(correctedNGroups);


There's a couple issues, mostly due to differences in handling of cases
with different heapSort flag. A full-sort (no LIMIT clause) we have
heapSort=false, and hence the execution simply jumps to

    correctedNGroups = nGroups;

while for LIMIT we do heapSort=true, in which case we also start with

    tuplesPerPrevGroup = ntuples;

That is almost certainly greater than output_tuples (=limit+offset), so
the first if condition in calculating correctedNGroups can't possibly be
true, and we simply end with

    correctedNGroups = 2.0;

in the first loop. Which seems pretty bogus - why would there be just
two groups? When processing the first expression, it's as if there was
one big "prev group" with all the tuples, so why not to just use nGroups
as it is?

This seems to confuse the costing quite a bit - enough to produce the
"inversed" costs with/without LIMIT, and picking the other plan.

I've simplified the costing a bit, and the attached version actually
undoes all the "suspicious" plan changes in postgres_fdw. It changes one
new plan, but that seems somewhat reasonable, as it pushes sort to the
remote side.

But after looking at the costing function, I have a bunch of additional
comments and questions:


1) I looked at the resources mentioned as sources the formulas came
from, but I've been unable to really match the algorithm to them. The
quicksort paper is particularly "dense", the notation seems to be very
different, and none of the theorems seem like an obvious fit. Would be
good to make the relationship clearer in comments etc.

For the Sedgewick course it's even worse - it's way too extensive to
just point at it and say "We're using ideas from this!" because no one
is going to know which chapter/section to look at. We need to be a bit
more specific about the reference.


2) I'm a bit puzzled by the "heapsort" chunk, actually. How come we need
it now, when we didn't need that before? In a way, the difference in
behavior between heasort and non-heapsort is what triggered the plan
changes ...

FWIW It's quite possible I tweaked the costing incorrectly, but it ends
up choosing the right plans purely by accident.


3) I'm getting a bit skeptical about the various magic coefficients that
are meant to model higher costs with non-uniform distribution. But
consider that we do this, for example:

   tuplesPerPrevGroup = ceil(1.5 * tuplesPerPrevGroup / nGroups);

but then in the next loop we call estimate_num_groups_incremental and
pass this "tweaked" tuplesPerPrevGroup value to it. I'm pretty sure this
may have various strange consequences - we'll calculate the nGroups
based on the inflated value, and we'll calculate tuplesPerPrevGroup from
that again - that seems susceptible to "amplification".

We inflate tuplesPerPrevGroup by 50%, which means we'll get a higher
nGroups estimate in the next loop - but not linearly. An then we'll
calculate the inflated tuplesPerPrevGroup and estimated nGroup ...

That seems pretty dubious, with hard to explain behavior, IMO.

If we want to keep applying these coefficients, we need to do that in a
way that does not affect the subsequent loop like this - we might tweak
the per_tuple_cost formula, for example, not tuplesPerPrevGroup.


4) I'm not sure it's actually a good idea to pass tuplesPerPrevGroup to
estimate_num_groups_incremental. In principle yes, if we use "group
size" from the previous step, then the returned value is the number of
new groups after adding the "new" pathkey.

But even if we ignore the issues with amplification mentioned in (3),
there's an issue with non-linear behavior in estimate_num_groups,
because at some point it's calculating

    D(N,n,p) = n * (1 - ((N-p)/N)^(N/n))

where N - total rows, p - sample size, n - number of distinct values.
And if we have (N1,n1) and (N2,n2) then the ratio of calculated
estimated (which is pretty much what calculating group size does)

    D(N2,n2,p2) / D(N1,n1,p1)

which will differ depending on p1 and p2. And if we're tweaking the
tuplesPerPrevGroup all the time, that's really annoying, as it may make
the groups smaller or larger, which is unpredictable and annoying, and I
wonder if it might go against the idea of penalizing tuplesPerPrevGroup
to some extent.

We could simply use the input "tuples" value here, and then divide the
current and previous estimate to calculate the number of new groups.



regards

-- 
Tomas Vondra
EnterpriseDB: http://www.enterprisedb.com
The Enterprise PostgreSQL Company
diff --git a/contrib/postgres_fdw/expected/postgres_fdw.out b/contrib/postgres_fdw/expected/postgres_fdw.out
index ed25e7a743..341bb7195e 100644
--- a/contrib/postgres_fdw/expected/postgres_fdw.out
+++ b/contrib/postgres_fdw/expected/postgres_fdw.out
@@ -2644,16 +2644,13 @@ select c2 * (random() <= 1)::int as c2 from ft2 group by c2 * (random() <= 1)::i
 -- GROUP BY clause in various forms, cardinal, alias and constant expression
 explain (verbose, costs off)
 select count(c2) w, c2 x, 5 y, 7.0 z from ft1 group by 2, y, 9.0::int order by 2;
-                                      QUERY PLAN                                       
----------------------------------------------------------------------------------------
- Sort
+                                                 QUERY PLAN                                                 
+------------------------------------------------------------------------------------------------------------
+ Foreign Scan
    Output: (count(c2)), c2, 5, 7.0, 9
-   Sort Key: ft1.c2
-   ->  Foreign Scan
-         Output: (count(c2)), c2, 5, 7.0, 9
-         Relations: Aggregate on (public.ft1)
-         Remote SQL: SELECT count(c2), c2, 5, 7.0, 9 FROM "S 1"."T 1" GROUP BY 2, 3, 5
-(7 rows)
+   Relations: Aggregate on (public.ft1)
+   Remote SQL: SELECT count(c2), c2, 5, 7.0, 9 FROM "S 1"."T 1" GROUP BY 2, 3, 5 ORDER BY c2 ASC NULLS LAST
+(4 rows)
 
 select count(c2) w, c2 x, 5 y, 7.0 z from ft1 group by 2, y, 9.0::int order by 2;
   w  | x | y |  z  
diff --git a/src/backend/optimizer/path/costsize.c b/src/backend/optimizer/path/costsize.c
index b54cf34a8e..4db5441db4 100644
--- a/src/backend/optimizer/path/costsize.c
+++ b/src/backend/optimizer/path/costsize.c
@@ -1754,6 +1754,325 @@ cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
 									rterm->pathtarget->width);
 }
 
+/*
+ * is_fake_var
+ *		Workaround for generate_append_tlist() which generates fake Vars with
+ *		varno == 0, that will cause a fail of estimate_num_group() call
+ *
+ * XXX Ummm, why would estimate_num_group fail with this?
+ */
+static bool
+is_fake_var(Expr *expr)
+{
+	if (IsA(expr, RelabelType))
+		expr = (Expr *) ((RelabelType *) expr)->arg;
+
+	return (IsA(expr, Var) && ((Var *) expr)->varno == 0);
+}
+
+/*
+ * get_width_cost_multiplier
+ *		Returns relative complexity of comparing two values based on it's width.
+ * The idea behind - long values have more expensive comparison. Return value is
+ * in cpu_operator_cost unit.
+ */
+static double
+get_width_cost_multiplier(PlannerInfo *root, Expr *expr)
+{
+	double	width = -1.0; /* fake value */
+
+	if (IsA(expr, RelabelType))
+		expr = (Expr *) ((RelabelType *) expr)->arg;
+
+	/* Try to find actual stat in corresponding relation */
+	if (IsA(expr, Var))
+	{
+		Var		*var = (Var *) expr;
+
+		if (var->varno > 0 && var->varno < root->simple_rel_array_size)
+		{
+			RelOptInfo	*rel = root->simple_rel_array[var->varno];
+
+			if (rel != NULL &&
+				var->varattno >= rel->min_attr &&
+				var->varattno <= rel->max_attr)
+			{
+				int	ndx = var->varattno - rel->min_attr;
+
+				if (rel->attr_widths[ndx] > 0)
+					width = rel->attr_widths[ndx];
+			}
+		}
+	}
+
+	/* Didn't find any actual stats, use estimation by type */
+	if (width < 0.0)
+	{
+		Node	*node = (Node*) expr;
+
+		width = get_typavgwidth(exprType(node), exprTypmod(node));
+	}
+
+	/*
+	 * Any value in pgsql is passed by Datum type, so any operation with value
+	 * could not be cheaper than operation with Datum type
+	 */
+	if (width <= sizeof(Datum))
+		return 1.0;
+
+	/*
+	 * Seems, cost of comparision is not directly proportional to args width,
+	 * because comparing args could be differ width (we known only average over
+	 * column) and difference often could be defined only by looking on first
+	 * bytes. So, use log16(width) as estimation.
+	 */
+	return 1.0 + 0.125 * LOG2(width / sizeof(Datum));
+}
+
+/*
+ * compute_cpu_sort_cost
+ *		compute CPU cost of sort (i.e. in-memory)
+ *
+ * The main thing we need to calculate to estimate sort CPU costs is the number
+ * of calls to the comparator functions. The difficulty is that for multi-column
+ * sorts there may be different data types involved (for some of which the calls
+ * may be much more expensive). Furthermore, the columns may have very different
+ * number of distinct values - the higher the number, the fewer comparisons will
+ * be needed for the following columns.
+ *
+ * The algoritm is incremental - we add pathkeys one by one, and at each step we
+ * estimate the number of necessary comparisons (based on the number of distinct
+ * groups in the current pathkey prefix and the new pathkey), and the comparison
+ * costs (which is data type specific).
+ *
+ * Estimation of the number of comparisons is based on ideas from two sources:
+ *
+ * 1) "Algorithms" (course), Robert Sedgewick, Kevin Wayne [https://algs4.cs.princeton.edu/home/]
+ *
+ * 2) "Quicksort Is Optimal For Many Equal Keys" (paper), Sebastian Wild,
+ * arXiv:1608.04906v4 [cs.DS] 1 Nov 2017. [https://arxiv.org/abs/1608.04906]
+ *
+ * In term of that paper, let N - number of tuples, Xi - number of tuples with
+ * key Ki, then the estimate of number of comparisons is:
+ *
+ *	log(N! / (X1! * X2! * ..))  ~  sum(Xi * log(N/Xi))
+ *
+ * In our case all Xi are the same because now we don't have any estimation of
+ * group sizes, we have only know the estimate of number of groups (distinct
+ * values). In that case, formula becomes:
+ *
+ *	N * log(NumberOfGroups)
+ *
+ * For multi-column sorts we need to estimate the number of comparisons for
+ * each individual column - for example with columns (c1, c2, ..., ck) we
+ * can estimate that number of comparions on ck is roughly
+ *
+ *	ncomparisons(c1, c2, ..., ck) / ncomparisons(c1, c2, ..., c(k-1))
+ *
+ * Let k be a column number, Gk - number of groups defined by k columns, and Fk
+ * the cost of the comparison is
+ *
+ *	N * sum( Fk * log(Gk) )
+ *
+ * Note: We also consider column witdth, not just the comparator cost.
+ *
+ * NOTE: some callers currently pass NIL for pathkeys because they
+ * can't conveniently supply the sort keys.  In this case, it will fallback to
+ * simple comparison cost estimate.
+ */
+static Cost
+compute_cpu_sort_cost(PlannerInfo *root, List *pathkeys, int nPresortedKeys,
+					  Cost comparison_cost, double tuples, double output_tuples,
+					  bool heapSort)
+{
+	Cost		per_tuple_cost = 0.0;
+	ListCell	*lc;
+	List		*pathkeyExprs = NIL;
+	double		tuplesPerPrevGroup = tuples;
+	double		totalFuncCost = 1.0;
+	bool		has_fake_var = false;
+	int			i = 0;
+	Oid			prev_datatype = InvalidOid;
+	Cost		funcCost = 0.0;
+	List		*cache_varinfos = NIL;
+
+	/* fallback if pathkeys is unknown */
+	if (list_length(pathkeys) == 0)
+	{
+		/*
+		 * If we'll use a bounded heap-sort keeping just K tuples in memory, for
+		 * a total number of tuple comparisons of N log2 K; but the constant
+		 * factor is a bit higher than for quicksort.  Tweak it so that the
+		 * cost curve is continuous at the crossover point.
+		 *
+		 * XXX I suppose the "quicksort factor" references to 1.5 at the end
+		 * of this function, but I'm not sure. I suggest we introduce some simple
+		 * constants for that, instead of magic values.
+		 */
+		output_tuples = (heapSort) ? 2.0 * output_tuples : tuples;
+		per_tuple_cost += 2.0 * cpu_operator_cost * LOG2(output_tuples);
+
+		/* add cost provided by caller */
+		per_tuple_cost += comparison_cost;
+
+		return per_tuple_cost * tuples;
+	}
+
+	/*
+	 * Computing total cost of sorting takes into account:
+	 * - per column comparison function cost
+	 * - we try to compute needed number of comparison per column
+	 */
+	foreach(lc, pathkeys)
+	{
+		PathKey				*pathkey = (PathKey*)lfirst(lc);
+		EquivalenceMember	*em;
+		double				 nGroups,
+							 correctedNGroups;
+
+		/*
+		 * We believe than equivalence members aren't very  different, so, to
+		 * estimate cost we take just first member
+		 */
+		em = (EquivalenceMember *) linitial(pathkey->pk_eclass->ec_members);
+
+		if (em->em_datatype != InvalidOid)
+		{
+			/* do not lookup funcCost if data type is the same as previous */
+			if (prev_datatype != em->em_datatype)
+			{
+				Oid			sortop;
+				QualCost	cost;
+
+				sortop = get_opfamily_member(pathkey->pk_opfamily,
+											 em->em_datatype, em->em_datatype,
+											 pathkey->pk_strategy);
+
+				cost.startup = 0;
+				cost.per_tuple = 0;
+				add_function_cost(root, get_opcode(sortop), NULL, &cost);
+				/* we need procost, not product of procost and cpu_operator_cost */
+				funcCost = cost.per_tuple / cpu_operator_cost;
+				prev_datatype = em->em_datatype;
+			}
+		}
+		else
+			funcCost = 1.0; /* fallback */
+
+		/* Try to take into account actual width fee */
+		funcCost *= get_width_cost_multiplier(root, em->em_expr);
+
+		totalFuncCost += funcCost;
+
+		/* remeber if we have a fake var in pathkeys */
+		has_fake_var |= is_fake_var(em->em_expr);
+		pathkeyExprs = lappend(pathkeyExprs, em->em_expr);
+
+		/*
+		 * Prevent call estimate_num_groups() with fake Var. Note,
+		 * pathkeyExprs contains only previous columns
+		 */
+		if (has_fake_var == false)
+			/*
+			 * Recursively compute number of group in group from previous step
+			 */
+			nGroups = estimate_num_groups_incremental(root, pathkeyExprs,
+													  tuplesPerPrevGroup, NULL, NULL,
+													  &cache_varinfos,
+													  list_length(pathkeyExprs) - 1);
+		else if (tuples > 4.0)
+			/*
+			 * Use geometric mean as estimation if there is no any stats.
+			 * Don't use DEFAULT_NUM_DISTINCT because it used for only one
+			 * column while here we try to estimate number of groups over
+			 * set of columns.
+			 *
+			 * XXX Perhaps this should use DEFAULT_NUM_DISTINCT at least to
+			 * limit the calculated values, somehow?
+			 *
+			 * XXX What's the logic of the following formula?
+			 */
+			nGroups = ceil(2.0 + sqrt(tuples) *
+				list_length(pathkeyExprs) / list_length(pathkeys));
+		else
+			nGroups = tuples;
+
+		/*
+		 * Presorted keys aren't participated in comparison but still checked
+		 * by qsort comparator.
+		 */
+		if (i >= nPresortedKeys)
+		{
+			if (heapSort)
+			{
+				double heap_tuples;
+
+				/* have to keep at least one group, and a multiple of group size */
+				heap_tuples = Max(ceil(output_tuples / tuplesPerPrevGroup) * tuplesPerPrevGroup,
+								  tuplesPerPrevGroup);
+
+				/* so how many (whole) groups is that? */
+				correctedNGroups = ceil(heap_tuples / tuplesPerPrevGroup);
+			}
+			else
+				/* all groups in the input */
+				correctedNGroups = nGroups;
+
+			correctedNGroups = Max(1.0, ceil(correctedNGroups));
+
+			per_tuple_cost += totalFuncCost * LOG2(correctedNGroups);
+		}
+
+		i++;
+
+		/*
+		 * Real-world distribution isn't uniform but now we don't have a way to
+		 * determine that, so, add multiplier to get closer to worst case.
+		 */
+		tuplesPerPrevGroup = ceil(1.5 * tuplesPerPrevGroup / nGroups);
+
+		/*
+		 * We could skip all following columns for cost estimation, because we
+		 * believe that tuples are unique by set ot previous columns
+		 */
+		if (tuplesPerPrevGroup <= 1.0)
+			break;
+	}
+
+	list_free(pathkeyExprs);
+
+	/* per_tuple_cost is in cpu_operator_cost units */
+	per_tuple_cost *= cpu_operator_cost;
+
+	/*
+	 * Accordingly to "Introduction to algorithms", Thomas H. Cormen, Charles E.
+	 * Leiserson, Ronald L. Rivest, ISBN 0-07-013143-0, quicksort estimation
+	 * formula has additional term proportional to number of tuples (See Chapter
+	 * 8.2 and Theorem 4.1). It has meaning with low number of tuples,
+	 * approximately less that 1e4. Of course, it could be implemented as
+	 * additional multiplier under logarithm, but use more complicated formula
+	 * which takes into account number of unique tuples and it isn't clear how
+	 * to combine multiplier with groups. Estimate it as 10 in cpu_operator_cost
+	 * unit.
+	 */
+	per_tuple_cost += 10 * cpu_operator_cost;
+
+	per_tuple_cost += comparison_cost;
+
+	return tuples * per_tuple_cost;
+}
+
+/*
+ * simple wrapper just to estimate best sort path
+ */
+Cost
+cost_sort_estimate(PlannerInfo *root, List *pathkeys, int nPresortedKeys,
+				   double tuples)
+{
+	return compute_cpu_sort_cost(root, pathkeys, nPresortedKeys,
+								0, tuples, tuples, false);
+}
+
 /*
  * cost_tuplesort
  *	  Determines and returns the cost of sorting a relation using tuplesort,
@@ -1770,7 +2089,7 @@ cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
  * number of initial runs formed and M is the merge order used by tuplesort.c.
  * Since the average initial run should be about sort_mem, we have
  *		disk traffic = 2 * relsize * ceil(logM(p / sort_mem))
- *		cpu = comparison_cost * t * log2(t)
+ * 		and cpu cost (computed by compute_cpu_sort_cost()).
  *
  * If the sort is bounded (i.e., only the first k result tuples are needed)
  * and k tuples can fit into sort_mem, we use a heap method that keeps only
@@ -1789,9 +2108,11 @@ cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
  * 'comparison_cost' is the extra cost per comparison, if any
  * 'sort_mem' is the number of kilobytes of work memory allowed for the sort
  * 'limit_tuples' is the bound on the number of output tuples; -1 if no bound
+ * 'startup_cost' is expected to be 0 at input. If there is "input cost" it should
+ * be added by caller later.
  */
 static void
-cost_tuplesort(Cost *startup_cost, Cost *run_cost,
+cost_tuplesort(PlannerInfo *root, List *pathkeys, Cost *startup_cost, Cost *run_cost,
 			   double tuples, int width,
 			   Cost comparison_cost, int sort_mem,
 			   double limit_tuples)
@@ -1808,9 +2129,6 @@ cost_tuplesort(Cost *startup_cost, Cost *run_cost,
 	if (tuples < 2.0)
 		tuples = 2.0;
 
-	/* Include the default cost-per-comparison */
-	comparison_cost += 2.0 * cpu_operator_cost;
-
 	/* Do we have a useful LIMIT? */
 	if (limit_tuples > 0 && limit_tuples < tuples)
 	{
@@ -1834,12 +2152,10 @@ cost_tuplesort(Cost *startup_cost, Cost *run_cost,
 		double		log_runs;
 		double		npageaccesses;
 
-		/*
-		 * CPU costs
-		 *
-		 * Assume about N log2 N comparisons
-		 */
-		*startup_cost = comparison_cost * tuples * LOG2(tuples);
+		/* CPU costs */
+		*startup_cost = compute_cpu_sort_cost(root, pathkeys, 0,
+											  comparison_cost, tuples,
+											  tuples, false);
 
 		/* Disk costs */
 
@@ -1855,18 +2171,17 @@ cost_tuplesort(Cost *startup_cost, Cost *run_cost,
 	}
 	else if (tuples > 2 * output_tuples || input_bytes > sort_mem_bytes)
 	{
-		/*
-		 * We'll use a bounded heap-sort keeping just K tuples in memory, for
-		 * a total number of tuple comparisons of N log2 K; but the constant
-		 * factor is a bit higher than for quicksort.  Tweak it so that the
-		 * cost curve is continuous at the crossover point.
-		 */
-		*startup_cost = comparison_cost * tuples * LOG2(2.0 * output_tuples);
+		/* We'll use a bounded heap-sort keeping just K tuples in memory. */
+		*startup_cost = compute_cpu_sort_cost(root, pathkeys, 0,
+											  comparison_cost, tuples,
+											  output_tuples, true);
 	}
 	else
 	{
 		/* We'll use plain quicksort on all the input tuples */
-		*startup_cost = comparison_cost * tuples * LOG2(tuples);
+		*startup_cost = compute_cpu_sort_cost(root, pathkeys, 0,
+											  comparison_cost, tuples,
+											  tuples, false);
 	}
 
 	/*
@@ -1899,8 +2214,8 @@ cost_incremental_sort(Path *path,
 					  double input_tuples, int width, Cost comparison_cost, int sort_mem,
 					  double limit_tuples)
 {
-	Cost		startup_cost = 0,
-				run_cost = 0,
+	Cost		startup_cost,
+				run_cost,
 				input_run_cost = input_total_cost - input_startup_cost;
 	double		group_tuples,
 				input_groups;
@@ -1985,7 +2300,7 @@ cost_incremental_sort(Path *path,
 	 * pessimistic about incremental sort performance and increase its average
 	 * group size by half.
 	 */
-	cost_tuplesort(&group_startup_cost, &group_run_cost,
+	cost_tuplesort(root, pathkeys, &group_startup_cost, &group_run_cost,
 				   1.5 * group_tuples, width, comparison_cost, sort_mem,
 				   limit_tuples);
 
@@ -1993,7 +2308,7 @@ cost_incremental_sort(Path *path,
 	 * Startup cost of incremental sort is the startup cost of its first group
 	 * plus the cost of its input.
 	 */
-	startup_cost += group_startup_cost
+	startup_cost = group_startup_cost
 		+ input_startup_cost + group_input_run_cost;
 
 	/*
@@ -2002,7 +2317,7 @@ cost_incremental_sort(Path *path,
 	 * group, plus the total cost to process the remaining groups, plus the
 	 * remaining cost of input.
 	 */
-	run_cost += group_run_cost
+	run_cost = group_run_cost
 		+ (group_run_cost + group_startup_cost) * (input_groups - 1)
 		+ group_input_run_cost * (input_groups - 1);
 
@@ -2042,7 +2357,7 @@ cost_sort(Path *path, PlannerInfo *root,
 	Cost		startup_cost;
 	Cost		run_cost;
 
-	cost_tuplesort(&startup_cost, &run_cost,
+	cost_tuplesort(root, pathkeys, &startup_cost, &run_cost,
 				   tuples, width,
 				   comparison_cost, sort_mem,
 				   limit_tuples);
@@ -2140,7 +2455,7 @@ append_nonpartial_cost(List *subpaths, int numpaths, int parallel_workers)
  *	  Determines and returns the cost of an Append node.
  */
 void
-cost_append(AppendPath *apath)
+cost_append(AppendPath *apath, PlannerInfo *root)
 {
 	ListCell   *l;
 
@@ -2208,7 +2523,7 @@ cost_append(AppendPath *apath)
 					 * any child.
 					 */
 					cost_sort(&sort_path,
-							  NULL, /* doesn't currently need root */
+							  root,
 							  pathkeys,
 							  subpath->total_cost,
 							  subpath->rows,
diff --git a/src/backend/optimizer/path/equivclass.c b/src/backend/optimizer/path/equivclass.c
index 6f1abbe47d..899da5b109 100644
--- a/src/backend/optimizer/path/equivclass.c
+++ b/src/backend/optimizer/path/equivclass.c
@@ -681,7 +681,18 @@ get_eclass_for_sort_expr(PlannerInfo *root,
 
 			if (opcintype == cur_em->em_datatype &&
 				equal(expr, cur_em->em_expr))
-				return cur_ec;	/* Match! */
+			{
+				/*
+				 * Match!
+				 *
+				 * Copy sortref if it wasn't set yet, it's possible if ec was
+				 * constructed from WHERE clause, ie it doesn't have target
+				 * reference at all
+				 */
+				if (cur_ec->ec_sortref == 0 && sortref > 0)
+					cur_ec->ec_sortref = sortref;
+				return cur_ec;
+			}
 		}
 	}
 
diff --git a/src/backend/optimizer/path/pathkeys.c b/src/backend/optimizer/path/pathkeys.c
index bd9a176d7d..f3fa743679 100644
--- a/src/backend/optimizer/path/pathkeys.c
+++ b/src/backend/optimizer/path/pathkeys.c
@@ -17,16 +17,19 @@
  */
 #include "postgres.h"
 
+#include "miscadmin.h"
 #include "access/stratnum.h"
 #include "catalog/pg_opfamily.h"
 #include "nodes/makefuncs.h"
 #include "nodes/nodeFuncs.h"
 #include "nodes/plannodes.h"
+#include "optimizer/cost.h"
 #include "optimizer/optimizer.h"
 #include "optimizer/pathnode.h"
 #include "optimizer/paths.h"
 #include "partitioning/partbounds.h"
 #include "utils/lsyscache.h"
+#include "utils/selfuncs.h"
 
 
 static bool pathkey_is_redundant(PathKey *new_pathkey, List *pathkeys);
@@ -334,6 +337,526 @@ pathkeys_contained_in(List *keys1, List *keys2)
 	return false;
 }
 
+/************************<DEBUG PART>*************************************/
+bool debug_group_by_reorder_by_pathkeys = true;
+bool debug_group_by_match_order_by = true;
+bool debug_cheapest_group_by = true;
+/************************</DEBUG PART>************************************/
+
+/*
+ * group_keys_reorder_by_pathkeys
+ *		Reorder GROUP BY keys to match pathkeys of input path.
+ *
+ * Function returns new lists (pathkeys and clauses), original GROUP BY lists
+ * stay untouched.
+ *
+ * Returns the number of GROUP BY keys with a matching pathkey.
+ */
+int
+group_keys_reorder_by_pathkeys(List *pathkeys, List **group_pathkeys,
+							   List **group_clauses)
+{
+	List	   *new_group_pathkeys= NIL,
+			   *new_group_clauses = NIL;
+	ListCell   *lc;
+	int			n;
+
+	if (debug_group_by_reorder_by_pathkeys == false)
+		return 0;
+
+	if (pathkeys == NIL || *group_pathkeys == NIL)
+		return 0;
+
+	/*
+	 * Walk the pathkeys (determining ordering of the input path) and see if
+	 * there's a matching GROUP BY key. If we find one, we append if to the
+	 * list, and do the same for the clauses.
+	 *
+	 * Once we find first pathkey without a matching GROUP BY key, the rest of
+	 * the pathkeys is useless and can't be used to evaluate the grouping, so
+	 * we abort the loop and ignore the remaining pathkeys.
+	 *
+	 * XXX Pathkeys are built in a way to allow simply comparing pointers.
+	 */
+	foreach(lc, pathkeys)
+	{
+		PathKey			*pathkey = (PathKey *) lfirst(lc);
+		SortGroupClause	*sgc;
+
+		/* abort on first mismatch */
+		if (!list_member_ptr(*group_pathkeys, pathkey))
+			break;
+
+		new_group_pathkeys = lappend(new_group_pathkeys, pathkey);
+
+		sgc = get_sortgroupref_clause(pathkey->pk_eclass->ec_sortref,
+									  *group_clauses);
+
+		new_group_clauses = lappend(new_group_clauses, sgc);
+	}
+
+	/* remember the number of pathkeys with a matching GROUP BY key */
+	n = list_length(new_group_pathkeys);
+
+	/* XXX maybe return when (n == 0) */
+
+	/* append the remaining group pathkeys (will be treated as not sorted) */
+	*group_pathkeys = list_concat_unique_ptr(new_group_pathkeys,
+											 *group_pathkeys);
+	*group_clauses = list_concat_unique_ptr(new_group_clauses,
+											*group_clauses);
+
+	return n;
+}
+
+/*
+ * Used to generate all permutations of a pathkey list.
+ */
+typedef struct PathkeyMutatorState {
+	List	   *elemsList;
+	ListCell  **elemCells;
+	void	  **elems;
+	int		   *positions;
+	int			 mutatorNColumns;
+	int			 count;
+} PathkeyMutatorState;
+
+
+/*
+ * PathkeyMutatorInit
+ *		Initialize state of the permutation generator.
+ *
+ * We want to generate permutations of elements in the "elems" list. We may want
+ * to skip some number of elements at the beginning (when treating as presorted)
+ * or at the end (we only permute a limited number of group keys).
+ *
+ * The list is decomposed into elements, and we also keep pointers to individual
+ * cells. This allows us to build the permuted list quickly and cheaply, without
+ * creating any copies.
+ */
+static void
+PathkeyMutatorInit(PathkeyMutatorState *state, List *elems, int start, int end)
+{
+	int i;
+	int			n = end - start;
+	ListCell	*lc;
+
+	memset(state, 0, sizeof(*state));
+
+	state->mutatorNColumns = n;
+
+	state->elemsList = list_copy(elems);
+
+	state->elems = palloc(sizeof(void*) * n);
+	state->elemCells = palloc(sizeof(ListCell*) * n);
+	state->positions = palloc(sizeof(int) * n);
+
+	i = 0;
+	for_each_cell(lc, state->elemsList, list_nth_cell(state->elemsList, start))
+	{
+		state->elemCells[i] = lc;
+		state->elems[i] = lfirst(lc);
+		state->positions[i] = i + 1;
+		i++;
+
+		if (i >= n)
+			break;
+	}
+}
+
+/* Swap two elements of an array. */
+static void
+PathkeyMutatorSwap(int *a, int i, int j)
+{
+  int s = a[i];
+
+  a[i] = a[j];
+  a[j] = s;
+}
+
+/*
+ * Generate the next permutation of elements.
+ */
+static bool
+PathkeyMutatorNextSet(int *a, int n)
+{
+	int j, k, l, r;
+
+	j = n - 2;
+
+	while (j >= 0 && a[j] >= a[j + 1])
+		j--;
+
+	if (j < 0)
+		return false;
+
+	k = n - 1;
+
+	while (k >= 0 && a[j] >= a[k])
+		k--;
+
+	PathkeyMutatorSwap(a, j, k);
+
+	l = j + 1;
+	r = n - 1;
+
+	while (l < r)
+		PathkeyMutatorSwap(a, l++, r--);
+
+	return true;
+}
+
+/*
+ * PathkeyMutatorNext
+ *		Generate the next permutation of list of elements.
+ *
+ * Returns the next permutation (as a list of elements) or NIL if there are no
+ * more permutations.
+ */
+static List *
+PathkeyMutatorNext(PathkeyMutatorState *state)
+{
+	int	i;
+
+	state->count++;
+
+	/* first permutation is original list */
+	if (state->count == 1)
+		return state->elemsList;
+
+	/* when there are no more permutations, return NIL */
+	if (!PathkeyMutatorNextSet(state->positions, state->mutatorNColumns))
+	{
+		pfree(state->elems);
+		pfree(state->elemCells);
+		pfree(state->positions);
+
+		list_free(state->elemsList);
+
+		return NIL;
+	}
+
+	/* update the list cells to point to the right elements */
+	for(i=0; i<state->mutatorNColumns; i++)
+		lfirst(state->elemCells[i]) =
+			(void *) state->elems[ state->positions[i] - 1 ];
+
+	return state->elemsList;
+}
+
+typedef struct {
+	Cost cost;
+	PathKey *pathkey;
+} PathkeySortCost;
+
+static int
+pathkey_sort_cost_comparator(const void *_a, const void *_b)
+{
+	const PathkeySortCost *a = (PathkeySortCost *) _a;
+	const PathkeySortCost *b = (PathkeySortCost *) _b;
+
+	if (a->cost < b->cost)
+		return -1;
+	else if (a->cost == b->cost)
+		return 0;
+	return 1;
+}
+
+/*
+ * get_cheapest_group_keys_order
+ *		Returns the pathkeys in an order cheapest to evaluate.
+ *
+ * Given a list of pathkeys, we try to reorder them in a way that minimizes
+ * the CPU cost of sorting. This depends mainly on the cost of comparator
+ * function (the pathkeys may use different data types) and the number of
+ * distinct values in each column (which affects the number of comparator
+ * calls for the following pathkeys).
+ *
+ * In case the input is partially sorted, only the remaining pathkeys are
+ * considered.
+ *
+ * Returns newly allocated lists. If no reordering is possible (or needed),
+ * the lists are set to NIL.
+ */
+static bool
+get_cheapest_group_keys_order(PlannerInfo *root, double nrows,
+							  List **group_pathkeys, List **group_clauses,
+							  int n_preordered)
+{
+	List		   *new_group_pathkeys = NIL,
+				   *new_group_clauses = NIL,
+				   *var_group_pathkeys;
+
+	ListCell	   *cell;
+	PathkeyMutatorState	mstate;
+	double			cheapest_sort_cost = -1.0;
+
+	int nFreeKeys;
+	int nToPermute;
+
+	/* If this optimization is disabled, we're done. */
+	if (!debug_cheapest_group_by)
+		return false;
+
+	/* If there are less than 2 unsorted pathkeys, we're done. */
+	if (list_length(*group_pathkeys) - n_preordered < 2)
+		return false;
+
+	/*
+	 * We could exhaustively cost all possible orderings of the pathkeys, but for
+	 * large number of pathkeys that might be prohibitively expensive. So we try
+	 * to apply a simple cheap heuristics first - we sort the pathkeys by sort
+	 * cost (as if the pathkey was sorted independently) and then check only the
+	 * four cheapest pathkeys. The remaining pathkeys are kept ordered by cost.
+	 *
+	 * XXX This is a very simple heuristics, and likely to work fine for most
+	 * cases (because number of GROUP BY clauses tends to be lower than 4). But
+	 * it ignores how the number of distinct values in each pathkey affects the
+	 * following sorts. It may be better to use "more expensive" pathkey first
+	 * if it has many distinct values, because it then limits the number of
+	 * comparisons for the remaining pathkeys. But evaluating that is kinda the
+	 * expensive bit we're trying to not do.
+	 */
+	nFreeKeys = list_length(*group_pathkeys) - n_preordered;
+	nToPermute = 4;
+	if (nFreeKeys > nToPermute)
+	{
+		int i;
+		PathkeySortCost *costs = palloc(sizeof(PathkeySortCost) * nFreeKeys);
+
+		/* skip the pre-ordered pathkeys */
+		cell = list_nth_cell(*group_pathkeys, n_preordered);
+
+		/* estimate cost for sorting individual pathkeys */
+		for (i = 0; cell != NULL; i++, (cell = lnext(*group_pathkeys, cell)))
+		{
+			List *to_cost = list_make1(lfirst(cell));
+
+			Assert(i < nFreeKeys);
+
+			costs[i].pathkey = lfirst(cell);
+			costs[i].cost = cost_sort_estimate(root, to_cost, 0, nrows);
+
+			pfree(to_cost);
+		}
+
+		/* sort the pathkeys by sort cost in ascending order */
+		qsort(costs, nFreeKeys, sizeof(*costs), pathkey_sort_cost_comparator);
+
+		/*
+		 * Rebuild the list of pathkeys - first the preordered ones, then the
+		 * rest ordered by cost.
+		 */
+		new_group_pathkeys = list_truncate(list_copy(*group_pathkeys), n_preordered);
+
+		for (i = 0; i < nFreeKeys; i++)
+			new_group_pathkeys = lappend(new_group_pathkeys, costs[i].pathkey);
+
+		pfree(costs);
+	}
+	else
+	{
+		/*
+		 * Since v13 list_free() can clean list elements so for original list
+		 * not to be modified it should be copied to a new one which can then
+		 * be cleaned safely if needed.
+		 */
+		new_group_pathkeys = list_copy(*group_pathkeys);
+		nToPermute = nFreeKeys;
+	}
+
+	Assert(list_length(new_group_pathkeys) == list_length(*group_pathkeys));
+
+	/*
+	 * Generate pathkey lists with permutations of the first nToPermute pathkeys.
+	 *
+	 * XXX We simply calculate sort cost for each individual pathkey list, but
+	 * there's room for two dynamic programming optimizations here. Firstly, we
+	 * may pass the current "best" cost to cost_sort_estimate so that it can
+	 * "abort" if the estimated pathkeys list exceeds it. Secondly, it could pass
+	 * return information about the position when it exceeded the cost, and we
+	 * could skip all permutations with the same prefix.
+	 *
+	 * Imagine we've already found ordering with cost C1, and we're evaluating
+	 * another ordering - cost_sort_estimate() calculates cost by adding the
+	 * pathkeys one by one (more or less), and the cost only grows. If at any
+	 * point it exceeds C1, it can't possibly be "better" so we can discard it.
+	 * But we also know that we can discard all ordering with the same prefix,
+	 * because if we're estimating (a,b,c,d) and we exceeded C1 at (a,b) then
+	 * the same thing will happen for any ordering with this prefix.
+	 *
+	 *
+	 */
+	PathkeyMutatorInit(&mstate, new_group_pathkeys, n_preordered, n_preordered + nToPermute);
+
+	while((var_group_pathkeys = PathkeyMutatorNext(&mstate)) != NIL)
+	{
+		Cost	cost;
+
+		cost = cost_sort_estimate(root, var_group_pathkeys, n_preordered, nrows);
+
+		if (cost < cheapest_sort_cost || cheapest_sort_cost < 0)
+		{
+			list_free(new_group_pathkeys);
+			new_group_pathkeys = list_copy(var_group_pathkeys);
+			cheapest_sort_cost = cost;
+		}
+	}
+
+	/* Reorder the group clauses according to the reordered pathkeys. */
+	foreach(cell, new_group_pathkeys)
+	{
+		PathKey			*pathkey = (PathKey *) lfirst(cell);
+
+		new_group_clauses = lappend(new_group_clauses,
+						get_sortgroupref_clause(pathkey->pk_eclass->ec_sortref,
+												*group_clauses));
+	}
+
+	/* Just append the rest GROUP BY clauses */
+	new_group_clauses = list_concat_unique_ptr(new_group_clauses,
+											   *group_clauses);
+
+	*group_pathkeys = new_group_pathkeys;
+	*group_clauses = new_group_clauses;
+
+	return true;
+}
+
+/*
+ * get_useful_group_keys_orderings
+ *		Determine which orderings of GROUP BY keys are potentially interesting.
+ *
+ * Returns list of PathKeyInfo items, each representing an interesting ordering
+ * of GROUP BY keys. Each items stores pathkeys and clauses in matching order.
+ *
+ * The function considers (and keeps) multiple group by orderings:
+ *
+ * - the original ordering, as specified by the GROUP BY clause
+ *
+ * - GROUP BY keys reordered to minimize the sort cost
+ *
+ * - GROUP BY keys reordered to match path ordering (as much as possible), with
+ *   the tail reoredered to minimize the sort cost
+ *
+ * - GROUP BY keys to match target ORDER BY clause (as much as possible), with
+ *   the tail reoredered to minimize the sort cost
+ *
+ * There are other potentially interesting orderings (e.g. it might be best to
+ * match the first ORDER BY key, order the remaining keys differently and then
+ * rely on incremental sort to fix this), but we ignore those for now. To make
+ * this work we'd have to pretty much generate all possible permutations.
+ */
+List *
+get_useful_group_keys_orderings(PlannerInfo *root, double nrows,
+								List *path_pathkeys,
+								List *group_pathkeys, List *group_clauses)
+{
+	Query	   *parse = root->parse;
+	List	   *infos = NIL;
+	PathKeyInfo *info;
+	int			n_preordered = 0;
+
+	List *pathkeys = group_pathkeys;
+	List *clauses = group_clauses;
+
+	/* always return at least the original pathkeys/clauses */
+	info = makeNode(PathKeyInfo);
+	info->pathkeys = pathkeys;
+	info->clauses = clauses;
+
+	infos = lappend(infos, info);
+
+	/* for grouping sets we can't do any reordering */
+	if (parse->groupingSets)
+		return infos;
+
+	/*
+	 * Try reordering pathkeys to minimize the sort cost, ignoring both the
+	 * target ordering (ORDER BY) and ordering of the input path.
+	 */
+	if (get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
+									  n_preordered))
+	{
+		info = makeNode(PathKeyInfo);
+		info->pathkeys = pathkeys;
+		info->clauses = clauses;
+
+		infos = lappend(infos, info);
+	}
+
+	/*
+	 * If the path is sorted in some way, try reordering the group keys to match
+	 * as much of the ordering as possible - we get this sort for free (mostly).
+	 *
+	 * We must not do this when there are no grouping sets, because those use
+	 * more complex logic to decide the ordering.
+	 *
+	 * XXX Isn't this somewhat redundant with presorted_keys? Actually, it's
+	 * more a complement, because it allows benefinting from incremental sort
+	 * as much as possible.
+	 *
+	 * XXX This does nothing if (n_preordered == 0). We shouldn't create the
+	 * info in this case.
+	 */
+	if (path_pathkeys)
+	{
+		n_preordered = group_keys_reorder_by_pathkeys(path_pathkeys,
+													  &pathkeys,
+													  &clauses);
+
+		/* reorder the tail to minimize sort cost */
+		get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
+									  n_preordered);
+
+		/*
+		 * reorder the tail to minimize sort cost
+		 *
+		 * XXX Ignore the return value - there may be nothing to reorder, in
+		 * which case get_cheapest_group_keys_order returns false. But we
+		 * still want to keep the keys reordered to path_pathkeys.
+		 */
+		info = makeNode(PathKeyInfo);
+		info->pathkeys = pathkeys;
+		info->clauses = clauses;
+
+		infos = lappend(infos, info);
+	}
+
+	/*
+	 * Try reordering pathkeys to minimize the sort cost (this time consider
+	 * the ORDER BY clause, but only if set debug_group_by_match_order_by).
+	 *
+	 * XXX This does nothing if (n_preordered == 0). We shouldn't create the
+	 * info in this case.
+	 */
+	if (root->sort_pathkeys && debug_group_by_match_order_by)
+	{
+		n_preordered = group_keys_reorder_by_pathkeys(root->sort_pathkeys,
+													  &pathkeys,
+													  &clauses);
+
+		/*
+		 * reorder the tail to minimize sort cost
+		 *
+		 * XXX Ignore the return value - there may be nothing to reorder, in
+		 * which case get_cheapest_group_keys_order returns false. But we
+		 * still want to keep the keys reordered to sort_pathkeys.
+		 */
+		get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
+									  n_preordered);
+
+		/* keep the group keys reordered to match ordering of input path */
+		info = makeNode(PathKeyInfo);
+		info->pathkeys = pathkeys;
+		info->clauses = clauses;
+
+		infos = lappend(infos, info);
+	}
+
+	return infos;
+}
+
 /*
  * pathkeys_count_contained_in
  *    Same as pathkeys_contained_in, but also sets length of longest
@@ -1862,6 +2385,54 @@ pathkeys_useful_for_ordering(PlannerInfo *root, List *pathkeys)
 	return n_common_pathkeys;
 }
 
+/*
+ * pathkeys_useful_for_grouping
+ *		Count the number of pathkeys that are useful for grouping (instead of
+ *		explicit sort)
+ *
+ * Group pathkeys could be reordered to benefit from the odering. The ordering
+ * may not be "complete" and may require incremental sort, but that's fine. So
+ * we simply count prefix pathkeys with a matching group key, and stop once we
+ * find the first pathkey without a match.
+ *
+ * So e.g. with pathkeys (a,b,c) and group keys (a,b,e) this determines (a,b)
+ * pathkeys are useful for grouping, and we might do incremental sort to get
+ * path ordered by (a,b,e).
+ *
+ * This logic is necessary to retain paths with ordeding not matching grouping
+ * keys directly, without the reordering.
+ *
+ * Returns the length of pathkey prefix with matching group keys.
+ */
+static int
+pathkeys_useful_for_grouping(PlannerInfo *root, List *pathkeys)
+{
+	ListCell *key;
+	int		  n = 0;
+
+	/* no special ordering requested for grouping */
+	if (root->group_pathkeys == NIL)
+		return 0;
+
+	/* unordered path */
+	if (pathkeys == NIL)
+		return 0;
+
+	/* walk the pathkeys and search for matching group key */
+	foreach(key, pathkeys)
+	{
+		PathKey	*pathkey = (PathKey *) lfirst(key);
+
+		/* no matching group key, we're done */
+		if (!list_member_ptr(root->group_pathkeys, pathkey))
+			break;
+
+		n++;
+	}
+
+	return n;
+}
+
 /*
  * truncate_useless_pathkeys
  *		Shorten the given pathkey list to just the useful pathkeys.
@@ -1876,6 +2447,9 @@ truncate_useless_pathkeys(PlannerInfo *root,
 
 	nuseful = pathkeys_useful_for_merging(root, rel, pathkeys);
 	nuseful2 = pathkeys_useful_for_ordering(root, pathkeys);
+	if (nuseful2 > nuseful)
+		nuseful = nuseful2;
+	nuseful2 = pathkeys_useful_for_grouping(root, pathkeys);
 	if (nuseful2 > nuseful)
 		nuseful = nuseful2;
 
@@ -1911,6 +2485,8 @@ has_useful_pathkeys(PlannerInfo *root, RelOptInfo *rel)
 {
 	if (rel->joininfo != NIL || rel->has_eclass_joins)
 		return true;			/* might be able to use pathkeys for merging */
+	if (root->group_pathkeys != NIL)
+		return true;			/* might be able to use pathkeys for grouping */
 	if (root->query_pathkeys != NIL)
 		return true;			/* might be able to use them for ordering */
 	return false;				/* definitely useless */
diff --git a/src/backend/optimizer/plan/planner.c b/src/backend/optimizer/plan/planner.c
index 1868c4eff4..bead51727f 100644
--- a/src/backend/optimizer/plan/planner.c
+++ b/src/backend/optimizer/plan/planner.c
@@ -6002,24 +6002,124 @@ add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
 		 */
 		foreach(lc, input_rel->pathlist)
 		{
+			ListCell   *lc2;
 			Path	   *path = (Path *) lfirst(lc);
+			Path	   *path_save = path;
 			Path	   *path_original = path;
-			bool		is_sorted;
-			int			presorted_keys;
 
-			is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
-													path->pathkeys,
-													&presorted_keys);
+			List	   *pathkey_orderings = NIL;
+
+			List	   *group_pathkeys = root->group_pathkeys;
+			List	   *group_clauses = parse->groupClause;
+
+			/* generate alternative group orderings that might be useful */
+			pathkey_orderings = get_useful_group_keys_orderings(root,
+																path->rows,
+																path->pathkeys,
+																group_pathkeys,
+																group_clauses);
 
-			if (path == cheapest_path || is_sorted)
+			Assert(list_length(pathkey_orderings) > 0);
+
+			/* process all potentially interesting grouping reorderings */
+			foreach (lc2, pathkey_orderings)
 			{
-				/* Sort the cheapest-total path if it isn't already sorted */
-				if (!is_sorted)
-					path = (Path *) create_sort_path(root,
-													 grouped_rel,
-													 path,
-													 root->group_pathkeys,
-													 -1.0);
+				bool		is_sorted;
+				int			presorted_keys = 0;
+				PathKeyInfo *info = (PathKeyInfo *) lfirst(lc2);
+
+				/* restore the path (we replace it in the loop) */
+				path = path_save;
+
+				is_sorted = pathkeys_count_contained_in(info->pathkeys,
+														path->pathkeys,
+														&presorted_keys);
+
+				if (path == cheapest_path || is_sorted)
+				{
+					/* Sort the cheapest-total path if it isn't already sorted */
+					if (!is_sorted)
+					{
+						path = (Path *) create_sort_path(root,
+														 grouped_rel,
+														 path,
+														 info->pathkeys,
+														 -1.0);
+					}
+
+					/* Now decide what to stick atop it */
+					if (parse->groupingSets)
+					{
+						consider_groupingsets_paths(root, grouped_rel,
+													path, true, can_hash,
+													gd, agg_costs, dNumGroups);
+					}
+					else if (parse->hasAggs)
+					{
+						/*
+						 * We have aggregation, possibly with plain GROUP BY. Make
+						 * an AggPath.
+						 */
+						add_path(grouped_rel, (Path *)
+								 create_agg_path(root,
+												 grouped_rel,
+												 path,
+												 grouped_rel->reltarget,
+												 info->clauses ? AGG_SORTED : AGG_PLAIN,
+												 AGGSPLIT_SIMPLE,
+												 info->clauses,
+												 havingQual,
+												 agg_costs,
+												 dNumGroups));
+					}
+					else if (group_clauses)
+					{
+						/*
+						 * We have GROUP BY without aggregation or grouping sets.
+						 * Make a GroupPath.
+						 */
+						add_path(grouped_rel, (Path *)
+								 create_group_path(root,
+												   grouped_rel,
+												   path,
+												   info->clauses,
+												   havingQual,
+												   dNumGroups));
+					}
+					else
+					{
+						/* Other cases should have been handled above */
+						Assert(false);
+					}
+				}
+
+				/*
+				 * Now we may consider incremental sort on this path, but only
+				 * when the path is not already sorted and when incremental sort
+				 * is enabled.
+				 */
+				if (is_sorted || !enable_incremental_sort)
+					continue;
+
+				/* Restore the input path (we might have added Sort on top). */
+				path = path_original;
+
+				/* no shared prefix, no point in building incremental sort */
+				if (presorted_keys == 0)
+					continue;
+
+				/*
+				 * We should have already excluded pathkeys of length 1 because
+				 * then presorted_keys > 0 would imply is_sorted was true.
+				 */
+				Assert(list_length(root->group_pathkeys) != 1);
+
+				path = (Path *) create_incremental_sort_path(root,
+															 grouped_rel,
+															 path,
+															 info->pathkeys,
+															 presorted_keys,
+															 -1.0);
 
 				/* Now decide what to stick atop it */
 				if (parse->groupingSets)
@@ -6031,17 +6131,17 @@ add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
 				else if (parse->hasAggs)
 				{
 					/*
-					 * We have aggregation, possibly with plain GROUP BY. Make
-					 * an AggPath.
+					 * We have aggregation, possibly with plain GROUP BY. Make an
+					 * AggPath.
 					 */
 					add_path(grouped_rel, (Path *)
 							 create_agg_path(root,
 											 grouped_rel,
 											 path,
 											 grouped_rel->reltarget,
-											 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+											 info->clauses ? AGG_SORTED : AGG_PLAIN,
 											 AGGSPLIT_SIMPLE,
-											 parse->groupClause,
+											 info->clauses,
 											 havingQual,
 											 agg_costs,
 											 dNumGroups));
@@ -6049,14 +6149,14 @@ add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
 				else if (parse->groupClause)
 				{
 					/*
-					 * We have GROUP BY without aggregation or grouping sets.
-					 * Make a GroupPath.
+					 * We have GROUP BY without aggregation or grouping sets. Make
+					 * a GroupPath.
 					 */
 					add_path(grouped_rel, (Path *)
 							 create_group_path(root,
 											   grouped_rel,
 											   path,
-											   parse->groupClause,
+											   info->clauses,
 											   havingQual,
 											   dNumGroups));
 				}
@@ -6066,79 +6166,6 @@ add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
 					Assert(false);
 				}
 			}
-
-			/*
-			 * Now we may consider incremental sort on this path, but only
-			 * when the path is not already sorted and when incremental sort
-			 * is enabled.
-			 */
-			if (is_sorted || !enable_incremental_sort)
-				continue;
-
-			/* Restore the input path (we might have added Sort on top). */
-			path = path_original;
-
-			/* no shared prefix, no point in building incremental sort */
-			if (presorted_keys == 0)
-				continue;
-
-			/*
-			 * We should have already excluded pathkeys of length 1 because
-			 * then presorted_keys > 0 would imply is_sorted was true.
-			 */
-			Assert(list_length(root->group_pathkeys) != 1);
-
-			path = (Path *) create_incremental_sort_path(root,
-														 grouped_rel,
-														 path,
-														 root->group_pathkeys,
-														 presorted_keys,
-														 -1.0);
-
-			/* Now decide what to stick atop it */
-			if (parse->groupingSets)
-			{
-				consider_groupingsets_paths(root, grouped_rel,
-											path, true, can_hash,
-											gd, agg_costs, dNumGroups);
-			}
-			else if (parse->hasAggs)
-			{
-				/*
-				 * We have aggregation, possibly with plain GROUP BY. Make an
-				 * AggPath.
-				 */
-				add_path(grouped_rel, (Path *)
-						 create_agg_path(root,
-										 grouped_rel,
-										 path,
-										 grouped_rel->reltarget,
-										 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
-										 AGGSPLIT_SIMPLE,
-										 parse->groupClause,
-										 havingQual,
-										 agg_costs,
-										 dNumGroups));
-			}
-			else if (parse->groupClause)
-			{
-				/*
-				 * We have GROUP BY without aggregation or grouping sets. Make
-				 * a GroupPath.
-				 */
-				add_path(grouped_rel, (Path *)
-						 create_group_path(root,
-										   grouped_rel,
-										   path,
-										   parse->groupClause,
-										   havingQual,
-										   dNumGroups));
-			}
-			else
-			{
-				/* Other cases should have been handled above */
-				Assert(false);
-			}
 		}
 
 		/*
@@ -6149,100 +6176,125 @@ add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel,
 		{
 			foreach(lc, partially_grouped_rel->pathlist)
 			{
+				ListCell   *lc2;
 				Path	   *path = (Path *) lfirst(lc);
 				Path	   *path_original = path;
-				bool		is_sorted;
-				int			presorted_keys;
 
-				is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
-														path->pathkeys,
-														&presorted_keys);
+				List	   *pathkey_orderings = NIL;
 
-				/*
-				 * Insert a Sort node, if required.  But there's no point in
-				 * sorting anything but the cheapest path.
-				 */
-				if (!is_sorted)
+				List	   *group_pathkeys = root->group_pathkeys;
+				List	   *group_clauses = parse->groupClause;
+
+				/* generate alternative group orderings that might be useful */
+				pathkey_orderings = get_useful_group_keys_orderings(root,
+																	path->rows,
+																	path->pathkeys,
+																	group_pathkeys,
+																	group_clauses);
+
+				Assert(list_length(pathkey_orderings) > 0);
+
+				/* process all potentially interesting grouping reorderings */
+				foreach (lc2, pathkey_orderings)
 				{
-					if (path != partially_grouped_rel->cheapest_total_path)
-						continue;
-					path = (Path *) create_sort_path(root,
-													 grouped_rel,
-													 path,
-													 root->group_pathkeys,
-													 -1.0);
-				}
+					bool		is_sorted;
+					int			presorted_keys = 0;
+					PathKeyInfo *info = (PathKeyInfo *) lfirst(lc2);
 
-				if (parse->hasAggs)
-					add_path(grouped_rel, (Path *)
-							 create_agg_path(root,
-											 grouped_rel,
-											 path,
-											 grouped_rel->reltarget,
-											 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
-											 AGGSPLIT_FINAL_DESERIAL,
-											 parse->groupClause,
-											 havingQual,
-											 agg_final_costs,
-											 dNumGroups));
-				else
-					add_path(grouped_rel, (Path *)
-							 create_group_path(root,
-											   grouped_rel,
-											   path,
-											   parse->groupClause,
-											   havingQual,
-											   dNumGroups));
+					/* restore the path (we replace it in the loop) */
+					path = path_original;
 
-				/*
-				 * Now we may consider incremental sort on this path, but only
-				 * when the path is not already sorted and when incremental
-				 * sort is enabled.
-				 */
-				if (is_sorted || !enable_incremental_sort)
-					continue;
+					is_sorted = pathkeys_count_contained_in(info->pathkeys,
+															path->pathkeys,
+															&presorted_keys);
 
-				/* Restore the input path (we might have added Sort on top). */
-				path = path_original;
+					/*
+					 * Insert a Sort node, if required.  But there's no point in
+					 * sorting anything but the cheapest path.
+					 */
+					if (!is_sorted)
+					{
+						if (path != partially_grouped_rel->cheapest_total_path)
+							continue;
 
-				/* no shared prefix, not point in building incremental sort */
-				if (presorted_keys == 0)
-					continue;
+						path = (Path *) create_sort_path(root,
+														 grouped_rel,
+														 path,
+														 info->pathkeys,
+														 -1.0);
+					}
 
-				/*
-				 * We should have already excluded pathkeys of length 1
-				 * because then presorted_keys > 0 would imply is_sorted was
-				 * true.
-				 */
-				Assert(list_length(root->group_pathkeys) != 1);
+					if (parse->hasAggs)
+						add_path(grouped_rel, (Path *)
+								 create_agg_path(root,
+												 grouped_rel,
+												 path,
+												 grouped_rel->reltarget,
+												 info->clauses ? AGG_SORTED : AGG_PLAIN,
+												 AGGSPLIT_FINAL_DESERIAL,
+												 info->clauses,
+												 havingQual,
+												 agg_final_costs,
+												 dNumGroups));
+					else
+						add_path(grouped_rel, (Path *)
+								 create_group_path(root,
+												   grouped_rel,
+												   path,
+												   info->clauses,
+												   havingQual,
+												   dNumGroups));
 
-				path = (Path *) create_incremental_sort_path(root,
-															 grouped_rel,
-															 path,
-															 root->group_pathkeys,
-															 presorted_keys,
-															 -1.0);
+					/*
+					 * Now we may consider incremental sort on this path, but only
+					 * when the path is not already sorted and when incremental
+					 * sort is enabled.
+					 */
+					if (is_sorted || !enable_incremental_sort)
+						continue;
 
-				if (parse->hasAggs)
-					add_path(grouped_rel, (Path *)
-							 create_agg_path(root,
-											 grouped_rel,
-											 path,
-											 grouped_rel->reltarget,
-											 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
-											 AGGSPLIT_FINAL_DESERIAL,
-											 parse->groupClause,
-											 havingQual,
-											 agg_final_costs,
-											 dNumGroups));
-				else
-					add_path(grouped_rel, (Path *)
-							 create_group_path(root,
-											   grouped_rel,
-											   path,
-											   parse->groupClause,
-											   havingQual,
-											   dNumGroups));
+					/* Restore the input path (we might have added Sort on top). */
+					path = path_original;
+
+					/* no shared prefix, not point in building incremental sort */
+					if (presorted_keys == 0)
+						continue;
+
+					/*
+					 * We should have already excluded pathkeys of length 1
+					 * because then presorted_keys > 0 would imply is_sorted was
+					 * true.
+					 */
+					Assert(list_length(root->group_pathkeys) != 1);
+
+					path = (Path *) create_incremental_sort_path(root,
+																 grouped_rel,
+																 path,
+																 info->pathkeys,
+																 presorted_keys,
+																 -1.0);
+
+					if (parse->hasAggs)
+						add_path(grouped_rel, (Path *)
+								 create_agg_path(root,
+												 grouped_rel,
+												 path,
+												 grouped_rel->reltarget,
+												 info->clauses ? AGG_SORTED : AGG_PLAIN,
+												 AGGSPLIT_FINAL_DESERIAL,
+												 info->clauses,
+												 havingQual,
+												 agg_final_costs,
+												 dNumGroups));
+					else
+						add_path(grouped_rel, (Path *)
+								 create_group_path(root,
+												   grouped_rel,
+												   path,
+												   info->clauses,
+												   havingQual,
+												   dNumGroups));
+				}
 			}
 		}
 	}
@@ -6445,41 +6497,71 @@ create_partial_grouping_paths(PlannerInfo *root,
 		 */
 		foreach(lc, input_rel->pathlist)
 		{
+			ListCell   *lc2;
 			Path	   *path = (Path *) lfirst(lc);
-			bool		is_sorted;
+			Path	   *path_save = path;
+
+			List	   *pathkey_orderings = NIL;
 
-			is_sorted = pathkeys_contained_in(root->group_pathkeys,
-											  path->pathkeys);
-			if (path == cheapest_total_path || is_sorted)
+			List	   *group_pathkeys = root->group_pathkeys;
+			List	   *group_clauses = parse->groupClause;
+
+			/* generate alternative group orderings that might be useful */
+			pathkey_orderings = get_useful_group_keys_orderings(root,
+																path->rows,
+																path->pathkeys,
+																group_pathkeys,
+																group_clauses);
+
+			Assert(list_length(pathkey_orderings) > 0);
+
+			/* process all potentially interesting grouping reorderings */
+			foreach (lc2, pathkey_orderings)
 			{
-				/* Sort the cheapest partial path, if it isn't already */
-				if (!is_sorted)
-					path = (Path *) create_sort_path(root,
-													 partially_grouped_rel,
-													 path,
-													 root->group_pathkeys,
-													 -1.0);
+				bool		is_sorted;
+				int			presorted_keys = 0;
+				PathKeyInfo *info = (PathKeyInfo *) lfirst(lc2);
 
-				if (parse->hasAggs)
-					add_path(partially_grouped_rel, (Path *)
-							 create_agg_path(root,
-											 partially_grouped_rel,
-											 path,
-											 partially_grouped_rel->reltarget,
-											 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
-											 AGGSPLIT_INITIAL_SERIAL,
-											 parse->groupClause,
-											 NIL,
-											 agg_partial_costs,
-											 dNumPartialGroups));
-				else
-					add_path(partially_grouped_rel, (Path *)
-							 create_group_path(root,
-											   partially_grouped_rel,
-											   path,
-											   parse->groupClause,
-											   NIL,
-											   dNumPartialGroups));
+				/* restore the path (we replace it in the loop) */
+				path = path_save;
+
+				is_sorted = pathkeys_count_contained_in(info->pathkeys,
+														path->pathkeys,
+														&presorted_keys);
+
+				if (path == cheapest_total_path || is_sorted)
+				{
+					/* Sort the cheapest partial path, if it isn't already */
+					if (!is_sorted)
+					{
+						path = (Path *) create_sort_path(root,
+														 partially_grouped_rel,
+														 path,
+														 info->pathkeys,
+														 -1.0);
+					}
+
+					if (parse->hasAggs)
+						add_path(partially_grouped_rel, (Path *)
+								 create_agg_path(root,
+												 partially_grouped_rel,
+												 path,
+												 partially_grouped_rel->reltarget,
+												 info->clauses ? AGG_SORTED : AGG_PLAIN,
+												 AGGSPLIT_INITIAL_SERIAL,
+												 info->clauses,
+												 NIL,
+												 agg_partial_costs,
+												 dNumPartialGroups));
+					else
+						add_path(partially_grouped_rel, (Path *)
+								 create_group_path(root,
+												   partially_grouped_rel,
+												   path,
+												   info->clauses,
+												   NIL,
+												   dNumPartialGroups));
+				}
 			}
 		}
 
@@ -6489,6 +6571,8 @@ create_partial_grouping_paths(PlannerInfo *root,
 		 * We can also skip the entire loop when we only have a single-item
 		 * group_pathkeys because then we can't possibly have a presorted
 		 * prefix of the list without having the list be fully sorted.
+		 *
+		 * XXX Shouldn't this also consider the group-key-reordering?
 		 */
 		if (enable_incremental_sort && list_length(root->group_pathkeys) > 1)
 		{
@@ -6547,24 +6631,100 @@ create_partial_grouping_paths(PlannerInfo *root,
 		/* Similar to above logic, but for partial paths. */
 		foreach(lc, input_rel->partial_pathlist)
 		{
+			ListCell   *lc2;
 			Path	   *path = (Path *) lfirst(lc);
 			Path	   *path_original = path;
-			bool		is_sorted;
-			int			presorted_keys;
 
-			is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
-													path->pathkeys,
-													&presorted_keys);
+			List	   *pathkey_orderings = NIL;
+
+			List	   *group_pathkeys = root->group_pathkeys;
+			List	   *group_clauses = parse->groupClause;
 
-			if (path == cheapest_partial_path || is_sorted)
+			/* generate alternative group orderings that might be useful */
+			pathkey_orderings = get_useful_group_keys_orderings(root,
+																path->rows,
+																path->pathkeys,
+																group_pathkeys,
+																group_clauses);
+
+			Assert(list_length(pathkey_orderings) > 0);
+
+			/* process all potentially interesting grouping reorderings */
+			foreach (lc2, pathkey_orderings)
 			{
-				/* Sort the cheapest partial path, if it isn't already */
-				if (!is_sorted)
-					path = (Path *) create_sort_path(root,
-													 partially_grouped_rel,
-													 path,
-													 root->group_pathkeys,
-													 -1.0);
+				bool		is_sorted;
+				int			presorted_keys = 0;
+				PathKeyInfo *info = (PathKeyInfo *) lfirst(lc2);
+
+				/* restore the path (we replace it in the loop) */
+				path = path_original;
+
+				is_sorted = pathkeys_count_contained_in(info->pathkeys,
+														path->pathkeys,
+														&presorted_keys);
+
+				if (path == cheapest_partial_path || is_sorted)
+				{
+
+					/* Sort the cheapest partial path, if it isn't already */
+					if (!is_sorted)
+					{
+						path = (Path *) create_sort_path(root,
+														 partially_grouped_rel,
+														 path,
+														 info->pathkeys,
+														 -1.0);
+					}
+
+					if (parse->hasAggs)
+						add_partial_path(partially_grouped_rel, (Path *)
+										 create_agg_path(root,
+														 partially_grouped_rel,
+														 path,
+														 partially_grouped_rel->reltarget,
+														 info->clauses ? AGG_SORTED : AGG_PLAIN,
+														 AGGSPLIT_INITIAL_SERIAL,
+														 info->clauses,
+														 NIL,
+														 agg_partial_costs,
+														 dNumPartialPartialGroups));
+					else
+						add_partial_path(partially_grouped_rel, (Path *)
+										 create_group_path(root,
+														   partially_grouped_rel,
+														   path,
+														   info->clauses,
+														   NIL,
+														   dNumPartialPartialGroups));
+				}
+
+				/*
+				 * Now we may consider incremental sort on this path, but only
+				 * when the path is not already sorted and when incremental sort
+				 * is enabled.
+				 */
+				if (is_sorted || !enable_incremental_sort)
+					continue;
+
+				/* Restore the input path (we might have added Sort on top). */
+				path = path_original;
+
+				/* no shared prefix, not point in building incremental sort */
+				if (presorted_keys == 0)
+					continue;
+
+				/*
+				 * We should have already excluded pathkeys of length 1 because
+				 * then presorted_keys > 0 would imply is_sorted was true.
+				 */
+				Assert(list_length(root->group_pathkeys) != 1);
+
+				path = (Path *) create_incremental_sort_path(root,
+															 partially_grouped_rel,
+															 path,
+															 info->pathkeys,
+															 presorted_keys,
+															 -1.0);
 
 				if (parse->hasAggs)
 					add_partial_path(partially_grouped_rel, (Path *)
@@ -6572,9 +6732,9 @@ create_partial_grouping_paths(PlannerInfo *root,
 													 partially_grouped_rel,
 													 path,
 													 partially_grouped_rel->reltarget,
-													 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
+													 info->clauses ? AGG_SORTED : AGG_PLAIN,
 													 AGGSPLIT_INITIAL_SERIAL,
-													 parse->groupClause,
+													 info->clauses,
 													 NIL,
 													 agg_partial_costs,
 													 dNumPartialPartialGroups));
@@ -6583,59 +6743,10 @@ create_partial_grouping_paths(PlannerInfo *root,
 									 create_group_path(root,
 													   partially_grouped_rel,
 													   path,
-													   parse->groupClause,
+													   info->clauses,
 													   NIL,
 													   dNumPartialPartialGroups));
 			}
-
-			/*
-			 * Now we may consider incremental sort on this path, but only
-			 * when the path is not already sorted and when incremental sort
-			 * is enabled.
-			 */
-			if (is_sorted || !enable_incremental_sort)
-				continue;
-
-			/* Restore the input path (we might have added Sort on top). */
-			path = path_original;
-
-			/* no shared prefix, not point in building incremental sort */
-			if (presorted_keys == 0)
-				continue;
-
-			/*
-			 * We should have already excluded pathkeys of length 1 because
-			 * then presorted_keys > 0 would imply is_sorted was true.
-			 */
-			Assert(list_length(root->group_pathkeys) != 1);
-
-			path = (Path *) create_incremental_sort_path(root,
-														 partially_grouped_rel,
-														 path,
-														 root->group_pathkeys,
-														 presorted_keys,
-														 -1.0);
-
-			if (parse->hasAggs)
-				add_partial_path(partially_grouped_rel, (Path *)
-								 create_agg_path(root,
-												 partially_grouped_rel,
-												 path,
-												 partially_grouped_rel->reltarget,
-												 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
-												 AGGSPLIT_INITIAL_SERIAL,
-												 parse->groupClause,
-												 NIL,
-												 agg_partial_costs,
-												 dNumPartialPartialGroups));
-			else
-				add_partial_path(partially_grouped_rel, (Path *)
-								 create_group_path(root,
-												   partially_grouped_rel,
-												   path,
-												   parse->groupClause,
-												   NIL,
-												   dNumPartialPartialGroups));
 		}
 	}
 
diff --git a/src/backend/optimizer/util/pathnode.c b/src/backend/optimizer/util/pathnode.c
index 0c94cbe767..78ec5d05e6 100644
--- a/src/backend/optimizer/util/pathnode.c
+++ b/src/backend/optimizer/util/pathnode.c
@@ -1342,7 +1342,7 @@ create_append_path(PlannerInfo *root,
 		pathnode->path.pathkeys = child->pathkeys;
 	}
 	else
-		cost_append(pathnode);
+		cost_append(pathnode, root);
 
 	/* If the caller provided a row estimate, override the computed value. */
 	if (rows >= 0)
diff --git a/src/backend/utils/adt/selfuncs.c b/src/backend/utils/adt/selfuncs.c
index 0c8c05f6c2..5b326364d1 100644
--- a/src/backend/utils/adt/selfuncs.c
+++ b/src/backend/utils/adt/selfuncs.c
@@ -3294,7 +3294,10 @@ add_unique_group_var(PlannerInfo *root, List *varinfos,
 }
 
 /*
- * estimate_num_groups		- Estimate number of groups in a grouped query
+ * estimate_num_groups/estimate_num_groups_incremental
+ *		- Estimate number of groups in a grouped query.
+ *		  _incremental variant is performance optimization for
+ *		  case of adding one-by-one column
  *
  * Given a query having a GROUP BY clause, estimate how many groups there
  * will be --- ie, the number of distinct combinations of the GROUP BY
@@ -3368,11 +3371,22 @@ double
 estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
 					List **pgset, EstimationInfo *estinfo)
 {
-	List	   *varinfos = NIL;
+	return estimate_num_groups_incremental(root, groupExprs,
+										   input_rows, pgset, estinfo,
+										   NULL, 0);
+}
+
+double
+estimate_num_groups_incremental(PlannerInfo *root, List *groupExprs,
+					double input_rows,
+					List **pgset, EstimationInfo *estinfo,
+					List **cache_varinfos, int prevNExprs)
+{
+	List	   *varinfos = (cache_varinfos) ? *cache_varinfos : NIL;
 	double		srf_multiplier = 1.0;
 	double		numdistinct;
 	ListCell   *l;
-	int			i;
+	int			i, j;
 
 	/* Zero the estinfo output parameter, if non-NULL */
 	if (estinfo != NULL)
@@ -3403,7 +3417,7 @@ estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
 	 */
 	numdistinct = 1.0;
 
-	i = 0;
+	i = j = 0;
 	foreach(l, groupExprs)
 	{
 		Node	   *groupexpr = (Node *) lfirst(l);
@@ -3412,6 +3426,14 @@ estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
 		List	   *varshere;
 		ListCell   *l2;
 
+		/* was done on previous call */
+		if (cache_varinfos && j++ < prevNExprs)
+		{
+			if (pgset)
+				i++; /* to keep in sync with lines below */
+			continue;
+		}
+
 		/* is expression in this grouping set? */
 		if (pgset && !list_member_int(*pgset, i++))
 			continue;
@@ -3481,7 +3503,11 @@ estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
 		if (varshere == NIL)
 		{
 			if (contain_volatile_functions(groupexpr))
+			{
+				if (cache_varinfos)
+					*cache_varinfos = varinfos;
 				return input_rows;
+			}
 			continue;
 		}
 
@@ -3498,6 +3524,9 @@ estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
 		}
 	}
 
+	if (cache_varinfos)
+		*cache_varinfos = varinfos;
+
 	/*
 	 * If now no Vars, we must have an all-constant or all-boolean GROUP BY
 	 * list.
diff --git a/src/backend/utils/misc/guc.c b/src/backend/utils/misc/guc.c
index a2e0f8de7e..28d43b14d8 100644
--- a/src/backend/utils/misc/guc.c
+++ b/src/backend/utils/misc/guc.c
@@ -2116,6 +2116,35 @@ static struct config_bool ConfigureNamesBool[] =
 		NULL, NULL, NULL
 	},
 
+/************************<DEBUG OPT GROUP BY>*********************************/
+	{
+		{"debug_group_by_reorder_by_pathkeys", PGC_USERSET, QUERY_TUNING_METHOD,
+			gettext_noop("enable reorder GROUP BY by pathkeys"),
+			NULL
+		},
+		&debug_group_by_reorder_by_pathkeys,
+		true,
+		NULL, NULL, NULL
+	},
+	{
+		{"debug_enable_group_by_match_order_by", PGC_USERSET, QUERY_TUNING_METHOD,
+			gettext_noop("enable matching GROUP BY by ORDER BY."),
+			NULL
+		},
+		&debug_group_by_match_order_by,
+		true,
+		NULL, NULL, NULL
+	},
+	{
+		{"debug_enable_cheapest_group_by", PGC_USERSET, QUERY_TUNING_METHOD,
+			gettext_noop("find a cheapest order of columns in GROUP BY."),
+			NULL
+		},
+		&debug_cheapest_group_by,
+		true,
+		NULL, NULL, NULL
+	},
+/************************</DEBUG OPT GROUP BY>********************************/
 	/* End-of-list marker */
 	{
 		{NULL, 0, 0, NULL, NULL}, NULL, false, NULL, NULL, NULL
diff --git a/src/include/nodes/nodes.h b/src/include/nodes/nodes.h
index f7b009ec43..e0dd3b62b5 100644
--- a/src/include/nodes/nodes.h
+++ b/src/include/nodes/nodes.h
@@ -267,6 +267,7 @@ typedef enum NodeTag
 	T_EquivalenceClass,
 	T_EquivalenceMember,
 	T_PathKey,
+	T_PathKeyInfo,
 	T_PathTarget,
 	T_RestrictInfo,
 	T_IndexClause,
diff --git a/src/include/nodes/pathnodes.h b/src/include/nodes/pathnodes.h
index e20c245f98..a148e3fd3f 100644
--- a/src/include/nodes/pathnodes.h
+++ b/src/include/nodes/pathnodes.h
@@ -1061,6 +1061,16 @@ typedef struct PathKey
 	bool		pk_nulls_first; /* do NULLs come before normal values? */
 } PathKey;
 
+/*
+ * Combines information about pathkeys and the associated clauses.
+ */
+typedef struct PathKeyInfo
+{
+	NodeTag		type;
+	List	   *pathkeys;
+	List	   *clauses;
+} PathKeyInfo;
+
 /*
  * VolatileFunctionStatus -- allows nodes to cache their
  * contain_volatile_functions properties. VOLATILITY_UNKNOWN means not yet
diff --git a/src/include/optimizer/cost.h b/src/include/optimizer/cost.h
index 2113bc82de..a3ff71fa9d 100644
--- a/src/include/optimizer/cost.h
+++ b/src/include/optimizer/cost.h
@@ -112,7 +112,9 @@ extern void cost_incremental_sort(Path *path,
 								  Cost input_startup_cost, Cost input_total_cost,
 								  double input_tuples, int width, Cost comparison_cost, int sort_mem,
 								  double limit_tuples);
-extern void cost_append(AppendPath *path);
+extern Cost cost_sort_estimate(PlannerInfo *root, List *pathkeys,
+							   int nPresortedKeys, double tuples);
+extern void cost_append(AppendPath *path, PlannerInfo *root);
 extern void cost_merge_append(Path *path, PlannerInfo *root,
 							  List *pathkeys, int n_streams,
 							  Cost input_startup_cost, Cost input_total_cost,
diff --git a/src/include/optimizer/paths.h b/src/include/optimizer/paths.h
index f1d111063c..47540b6c0e 100644
--- a/src/include/optimizer/paths.h
+++ b/src/include/optimizer/paths.h
@@ -203,6 +203,17 @@ typedef enum
 extern PathKeysComparison compare_pathkeys(List *keys1, List *keys2);
 extern bool pathkeys_contained_in(List *keys1, List *keys2);
 extern bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common);
+extern int group_keys_reorder_by_pathkeys(List *pathkeys,
+										  List **group_pathkeys,
+										  List **group_clauses);
+/************************<DEBUG OPT GROUP BY>*********************************/
+extern bool debug_group_by_reorder_by_pathkeys;
+extern bool debug_group_by_match_order_by;
+extern bool debug_cheapest_group_by;
+/************************</DEBUG OPT GROUP BY>********************************/
+extern List *get_useful_group_keys_orderings(PlannerInfo *root, double nrows,
+											 List *path_pathkeys,
+											 List *pathkeys, List *clauses);
 extern Path *get_cheapest_path_for_pathkeys(List *paths, List *pathkeys,
 											Relids required_outer,
 											CostSelector cost_criterion,
diff --git a/src/include/utils/selfuncs.h b/src/include/utils/selfuncs.h
index 9dd444e1ff..e20f45e104 100644
--- a/src/include/utils/selfuncs.h
+++ b/src/include/utils/selfuncs.h
@@ -214,6 +214,11 @@ extern double estimate_num_groups(PlannerInfo *root, List *groupExprs,
 								  double input_rows, List **pgset,
 								  EstimationInfo *estinfo);
 
+extern double estimate_num_groups_incremental(PlannerInfo *root, List *groupExprs,
+					double input_rows, List **pgset,
+					EstimationInfo *estinfo,
+					List **cache_varinfos, int prevNExprs);
+
 extern void estimate_hash_bucket_stats(PlannerInfo *root,
 									   Node *hashkey, double nbuckets,
 									   Selectivity *mcv_freq,
diff --git a/src/test/regress/expected/aggregates.out b/src/test/regress/expected/aggregates.out
index 23b112b2af..f8ab04295e 100644
--- a/src/test/regress/expected/aggregates.out
+++ b/src/test/regress/expected/aggregates.out
@@ -1200,7 +1200,8 @@ explain (costs off)
   select distinct min(f1), max(f1) from minmaxtest;
                                          QUERY PLAN                                          
 ---------------------------------------------------------------------------------------------
- Unique
+ HashAggregate
+   Group Key: $0, $1
    InitPlan 1 (returns $0)
      ->  Limit
            ->  Merge Append
@@ -1223,10 +1224,8 @@ explain (costs off)
                  ->  Index Only Scan using minmaxtest2i on minmaxtest2 minmaxtest_8
                        Index Cond: (f1 IS NOT NULL)
                  ->  Index Only Scan Backward using minmaxtest3i on minmaxtest3 minmaxtest_9
-   ->  Sort
-         Sort Key: ($0), ($1)
-         ->  Result
-(26 rows)
+   ->  Result
+(25 rows)
 
 select distinct min(f1), max(f1) from minmaxtest;
  min | max 
@@ -2408,6 +2407,241 @@ SELECT balk(hundred) FROM tenk1;
 (1 row)
 
 ROLLBACK;
+-- GROUP BY optimization by reorder columns
+SELECT
+	i AS id,
+	i/2 AS p,
+	format('%60s', i%2) AS v,
+	i/4 AS c,
+	i/8 AS d,
+	(random() * (10000/8))::int as e --the same as d but no correlation with p
+	INTO btg
+FROM
+	generate_series(1, 10000) i;
+VACUUM btg;
+ANALYZE btg;
+-- GROUP BY optimization by reorder columns by frequency
+SET enable_hashagg=off;
+SET max_parallel_workers= 0;
+SET max_parallel_workers_per_gather = 0;
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v;
+         QUERY PLAN          
+-----------------------------
+ GroupAggregate
+   Group Key: p, v
+   ->  Sort
+         Sort Key: p, v
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p;
+         QUERY PLAN          
+-----------------------------
+ GroupAggregate
+   Group Key: p, v
+   ->  Sort
+         Sort Key: p, v
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c;
+         QUERY PLAN          
+-----------------------------
+ GroupAggregate
+   Group Key: p, c, v
+   ->  Sort
+         Sort Key: p, c, v
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c ORDER BY v, p, c;
+         QUERY PLAN          
+-----------------------------
+ GroupAggregate
+   Group Key: v, p, c
+   ->  Sort
+         Sort Key: v, p, c
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c;
+          QUERY PLAN          
+------------------------------
+ GroupAggregate
+   Group Key: p, d, c, v
+   ->  Sort
+         Sort Key: p, d, c, v
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c ORDER BY v, p, d ,c;
+          QUERY PLAN          
+------------------------------
+ GroupAggregate
+   Group Key: v, p, d, c
+   ->  Sort
+         Sort Key: v, p, d, c
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c ORDER BY p, v, d ,c;
+          QUERY PLAN          
+------------------------------
+ GroupAggregate
+   Group Key: p, v, d, c
+   ->  Sort
+         Sort Key: p, v, d, c
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, d, e;
+         QUERY PLAN          
+-----------------------------
+ GroupAggregate
+   Group Key: p, d, e
+   ->  Sort
+         Sort Key: p, d, e
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, e, d;
+         QUERY PLAN          
+-----------------------------
+ GroupAggregate
+   Group Key: p, e, d
+   ->  Sort
+         Sort Key: p, e, d
+         ->  Seq Scan on btg
+(5 rows)
+
+CREATE STATISTICS btg_dep ON d, e, p FROM btg;
+ANALYZE btg;
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, d, e;
+         QUERY PLAN          
+-----------------------------
+ GroupAggregate
+   Group Key: p, d, e
+   ->  Sort
+         Sort Key: p, d, e
+         ->  Seq Scan on btg
+(5 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, e, d;
+         QUERY PLAN          
+-----------------------------
+ GroupAggregate
+   Group Key: p, e, d
+   ->  Sort
+         Sort Key: p, e, d
+         ->  Seq Scan on btg
+(5 rows)
+
+-- GROUP BY optimization by reorder columns by index scan
+CREATE INDEX ON btg(p, v);
+SET enable_seqscan=off;
+SET enable_bitmapscan=off;
+VACUUM btg;
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v;
+                   QUERY PLAN                   
+------------------------------------------------
+ GroupAggregate
+   Group Key: p, v
+   ->  Index Only Scan using btg_p_v_idx on btg
+(3 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v ORDER BY p, v;
+                   QUERY PLAN                   
+------------------------------------------------
+ GroupAggregate
+   Group Key: p, v
+   ->  Index Only Scan using btg_p_v_idx on btg
+(3 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p;
+                   QUERY PLAN                   
+------------------------------------------------
+ GroupAggregate
+   Group Key: p, v
+   ->  Index Only Scan using btg_p_v_idx on btg
+(3 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p ORDER BY p, v;
+                   QUERY PLAN                   
+------------------------------------------------
+ GroupAggregate
+   Group Key: p, v
+   ->  Index Only Scan using btg_p_v_idx on btg
+(3 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c;
+                   QUERY PLAN                    
+-------------------------------------------------
+ GroupAggregate
+   Group Key: p, c, v
+   ->  Incremental Sort
+         Sort Key: p, c, v
+         Presorted Key: p
+         ->  Index Scan using btg_p_v_idx on btg
+(6 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c ORDER BY p, v;
+                   QUERY PLAN                    
+-------------------------------------------------
+ GroupAggregate
+   Group Key: p, v, c
+   ->  Incremental Sort
+         Sort Key: p, v, c
+         Presorted Key: p, v
+         ->  Index Scan using btg_p_v_idx on btg
+(6 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, c, p, d;
+                   QUERY PLAN                    
+-------------------------------------------------
+ GroupAggregate
+   Group Key: p, c, d, v
+   ->  Incremental Sort
+         Sort Key: p, c, d, v
+         Presorted Key: p
+         ->  Index Scan using btg_p_v_idx on btg
+(6 rows)
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, c, p, d ORDER BY p, v;
+                   QUERY PLAN                    
+-------------------------------------------------
+ GroupAggregate
+   Group Key: p, v, c, d
+   ->  Incremental Sort
+         Sort Key: p, v, c, d
+         Presorted Key: p, v
+         ->  Index Scan using btg_p_v_idx on btg
+(6 rows)
+
+DROP TABLE btg;
+RESET enable_hashagg;
+RESET max_parallel_workers;
+RESET max_parallel_workers_per_gather;
+RESET enable_seqscan;
+RESET enable_bitmapscan;
 -- Secondly test the case of a parallel aggregate combiner function
 -- returning NULL. For that use normal transition function, but a
 -- combiner function returning NULL.
diff --git a/src/test/regress/expected/incremental_sort.out b/src/test/regress/expected/incremental_sort.out
index 545e301e48..21c429226f 100644
--- a/src/test/regress/expected/incremental_sort.out
+++ b/src/test/regress/expected/incremental_sort.out
@@ -1439,7 +1439,7 @@ set parallel_setup_cost = 0;
 set parallel_tuple_cost = 0;
 set max_parallel_workers_per_gather = 2;
 create table t (a int, b int, c int);
-insert into t select mod(i,10),mod(i,10),i from generate_series(1,10000) s(i);
+insert into t select mod(i,10),mod(i,10),i from generate_series(1,60000) s(i);
 create index on t (a);
 analyze t;
 set enable_incremental_sort = off;
diff --git a/src/test/regress/expected/join.out b/src/test/regress/expected/join.out
index f3589d0dbb..59e68ac0b7 100644
--- a/src/test/regress/expected/join.out
+++ b/src/test/regress/expected/join.out
@@ -1984,8 +1984,8 @@ USING (name);
 ------+----+----
  bb   | 12 | 13
  cc   | 22 | 23
- dd   |    | 33
  ee   | 42 |   
+ dd   |    | 33
 (4 rows)
 
 -- Cases with non-nullable expressions in subquery results;
@@ -2019,8 +2019,8 @@ NATURAL FULL JOIN
 ------+------+------+------+------
  bb   |   12 |    2 |   13 |    3
  cc   |   22 |    2 |   23 |    3
- dd   |      |      |   33 |    3
  ee   |   42 |    2 |      |     
+ dd   |      |      |   33 |    3
 (4 rows)
 
 SELECT * FROM
@@ -4612,18 +4612,20 @@ select d.* from d left join (select * from b group by b.id, b.c_id) s
 explain (costs off)
 select d.* from d left join (select distinct * from b) s
   on d.a = s.id;
-              QUERY PLAN              
---------------------------------------
- Merge Right Join
-   Merge Cond: (b.id = d.a)
-   ->  Unique
-         ->  Sort
-               Sort Key: b.id, b.c_id
-               ->  Seq Scan on b
+                 QUERY PLAN                  
+---------------------------------------------
+ Merge Left Join
+   Merge Cond: (d.a = s.id)
    ->  Sort
          Sort Key: d.a
          ->  Seq Scan on d
-(9 rows)
+   ->  Sort
+         Sort Key: s.id
+         ->  Subquery Scan on s
+               ->  HashAggregate
+                     Group Key: b.id, b.c_id
+                     ->  Seq Scan on b
+(11 rows)
 
 -- check join removal works when uniqueness of the join condition is enforced
 -- by a UNION
@@ -6298,44 +6300,39 @@ select * from j1 natural join j2;
 explain (verbose, costs off)
 select * from j1
 inner join (select distinct id from j3) j3 on j1.id = j3.id;
-               QUERY PLAN                
------------------------------------------
+            QUERY PLAN             
+-----------------------------------
  Nested Loop
    Output: j1.id, j3.id
    Inner Unique: true
    Join Filter: (j1.id = j3.id)
-   ->  Unique
+   ->  HashAggregate
          Output: j3.id
-         ->  Sort
+         Group Key: j3.id
+         ->  Seq Scan on public.j3
                Output: j3.id
-               Sort Key: j3.id
-               ->  Seq Scan on public.j3
-                     Output: j3.id
    ->  Seq Scan on public.j1
          Output: j1.id
-(13 rows)
+(11 rows)
 
 -- ensure group by clause allows the inner to become unique
 explain (verbose, costs off)
 select * from j1
 inner join (select id from j3 group by id) j3 on j1.id = j3.id;
-               QUERY PLAN                
------------------------------------------
+            QUERY PLAN             
+-----------------------------------
  Nested Loop
    Output: j1.id, j3.id
    Inner Unique: true
    Join Filter: (j1.id = j3.id)
-   ->  Group
+   ->  HashAggregate
          Output: j3.id
          Group Key: j3.id
-         ->  Sort
+         ->  Seq Scan on public.j3
                Output: j3.id
-               Sort Key: j3.id
-               ->  Seq Scan on public.j3
-                     Output: j3.id
    ->  Seq Scan on public.j1
          Output: j1.id
-(14 rows)
+(11 rows)
 
 drop table j1;
 drop table j2;
diff --git a/src/test/regress/expected/partition_aggregate.out b/src/test/regress/expected/partition_aggregate.out
index dfa4b036b5..a08a3825ff 100644
--- a/src/test/regress/expected/partition_aggregate.out
+++ b/src/test/regress/expected/partition_aggregate.out
@@ -952,32 +952,30 @@ SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HA
 --------------------------------------------------------------------------------------
  Sort
    Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (array_agg(DISTINCT pagg_tab_ml.c))
-   ->  Gather
-         Workers Planned: 2
-         ->  Parallel Append
-               ->  GroupAggregate
-                     Group Key: pagg_tab_ml.a
-                     Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
-                     ->  Sort
-                           Sort Key: pagg_tab_ml.a
-                           ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-               ->  GroupAggregate
-                     Group Key: pagg_tab_ml_5.a
-                     Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
-                     ->  Sort
-                           Sort Key: pagg_tab_ml_5.a
-                           ->  Append
-                                 ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
-                                 ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
-               ->  GroupAggregate
-                     Group Key: pagg_tab_ml_2.a
-                     Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
-                     ->  Sort
-                           Sort Key: pagg_tab_ml_2.a
-                           ->  Append
-                                 ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
-                                 ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
-(27 rows)
+   ->  Append
+         ->  GroupAggregate
+               Group Key: pagg_tab_ml.a
+               Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+               ->  Sort
+                     Sort Key: pagg_tab_ml.a
+                     ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+         ->  GroupAggregate
+               Group Key: pagg_tab_ml_2.a
+               Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+               ->  Sort
+                     Sort Key: pagg_tab_ml_2.a
+                     ->  Append
+                           ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+                           ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+         ->  GroupAggregate
+               Group Key: pagg_tab_ml_5.a
+               Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+               ->  Sort
+                     Sort Key: pagg_tab_ml_5.a
+                     ->  Append
+                           ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+                           ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+(25 rows)
 
 SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
  a  | sum  |  array_agg  | count 
@@ -996,34 +994,32 @@ SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HA
 -- Without ORDER BY clause, to test Gather at top-most path
 EXPLAIN (COSTS OFF)
 SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3;
-                                QUERY PLAN                                 
----------------------------------------------------------------------------
- Gather
-   Workers Planned: 2
-   ->  Parallel Append
-         ->  GroupAggregate
-               Group Key: pagg_tab_ml.a
-               Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
-               ->  Sort
-                     Sort Key: pagg_tab_ml.a
-                     ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
-         ->  GroupAggregate
-               Group Key: pagg_tab_ml_5.a
-               Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
-               ->  Sort
-                     Sort Key: pagg_tab_ml_5.a
-                     ->  Append
-                           ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
-                           ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
-         ->  GroupAggregate
-               Group Key: pagg_tab_ml_2.a
-               Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
-               ->  Sort
-                     Sort Key: pagg_tab_ml_2.a
-                     ->  Append
-                           ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
-                           ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
-(25 rows)
+                             QUERY PLAN                              
+---------------------------------------------------------------------
+ Append
+   ->  GroupAggregate
+         Group Key: pagg_tab_ml.a
+         Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+         ->  Sort
+               Sort Key: pagg_tab_ml.a
+               ->  Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+   ->  GroupAggregate
+         Group Key: pagg_tab_ml_2.a
+         Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+         ->  Sort
+               Sort Key: pagg_tab_ml_2.a
+               ->  Append
+                     ->  Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+                     ->  Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+   ->  GroupAggregate
+         Group Key: pagg_tab_ml_5.a
+         Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+         ->  Sort
+               Sort Key: pagg_tab_ml_5.a
+               ->  Append
+                     ->  Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+                     ->  Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+(23 rows)
 
 -- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
 -- for level 1 only. For subpartitions, GROUP BY clause does not match with
@@ -1379,28 +1375,26 @@ SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) <
 -- When GROUP BY clause does not match; partial aggregation is performed for each partition.
 EXPLAIN (COSTS OFF)
 SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
-                                        QUERY PLAN                                         
--------------------------------------------------------------------------------------------
+                                     QUERY PLAN                                      
+-------------------------------------------------------------------------------------
  Sort
    Sort Key: pagg_tab_para.y, (sum(pagg_tab_para.x)), (avg(pagg_tab_para.x))
-   ->  Finalize GroupAggregate
+   ->  Finalize HashAggregate
          Group Key: pagg_tab_para.y
          Filter: (avg(pagg_tab_para.x) < '12'::numeric)
-         ->  Gather Merge
+         ->  Gather
                Workers Planned: 2
-               ->  Sort
-                     Sort Key: pagg_tab_para.y
-                     ->  Parallel Append
-                           ->  Partial HashAggregate
-                                 Group Key: pagg_tab_para.y
-                                 ->  Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
-                           ->  Partial HashAggregate
-                                 Group Key: pagg_tab_para_1.y
-                                 ->  Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
-                           ->  Partial HashAggregate
-                                 Group Key: pagg_tab_para_2.y
-                                 ->  Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
-(19 rows)
+               ->  Parallel Append
+                     ->  Partial HashAggregate
+                           Group Key: pagg_tab_para.y
+                           ->  Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
+                     ->  Partial HashAggregate
+                           Group Key: pagg_tab_para_1.y
+                           ->  Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
+                     ->  Partial HashAggregate
+                           Group Key: pagg_tab_para_2.y
+                           ->  Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
+(17 rows)
 
 SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
  y  |  sum  |         avg         | count 
diff --git a/src/test/regress/expected/partition_join.out b/src/test/regress/expected/partition_join.out
index 27f7525b3e..100ded51b0 100644
--- a/src/test/regress/expected/partition_join.out
+++ b/src/test/regress/expected/partition_join.out
@@ -466,52 +466,41 @@ EXPLAIN (COSTS OFF)
 SELECT a, b FROM prt1 FULL JOIN prt2 p2(b,a,c) USING(a,b)
   WHERE a BETWEEN 490 AND 510
   GROUP BY 1, 2 ORDER BY 1, 2;
-                                                   QUERY PLAN                                                    
------------------------------------------------------------------------------------------------------------------
+                                                QUERY PLAN                                                 
+-----------------------------------------------------------------------------------------------------------
  Group
    Group Key: (COALESCE(prt1.a, p2.a)), (COALESCE(prt1.b, p2.b))
-   ->  Merge Append
+   ->  Sort
          Sort Key: (COALESCE(prt1.a, p2.a)), (COALESCE(prt1.b, p2.b))
-         ->  Group
-               Group Key: (COALESCE(prt1.a, p2.a)), (COALESCE(prt1.b, p2.b))
-               ->  Sort
-                     Sort Key: (COALESCE(prt1.a, p2.a)), (COALESCE(prt1.b, p2.b))
-                     ->  Merge Full Join
-                           Merge Cond: ((prt1.a = p2.a) AND (prt1.b = p2.b))
-                           Filter: ((COALESCE(prt1.a, p2.a) >= 490) AND (COALESCE(prt1.a, p2.a) <= 510))
-                           ->  Sort
-                                 Sort Key: prt1.a, prt1.b
-                                 ->  Seq Scan on prt1_p1 prt1
-                           ->  Sort
-                                 Sort Key: p2.a, p2.b
-                                 ->  Seq Scan on prt2_p1 p2
-         ->  Group
-               Group Key: (COALESCE(prt1_1.a, p2_1.a)), (COALESCE(prt1_1.b, p2_1.b))
-               ->  Sort
-                     Sort Key: (COALESCE(prt1_1.a, p2_1.a)), (COALESCE(prt1_1.b, p2_1.b))
-                     ->  Merge Full Join
-                           Merge Cond: ((prt1_1.a = p2_1.a) AND (prt1_1.b = p2_1.b))
-                           Filter: ((COALESCE(prt1_1.a, p2_1.a) >= 490) AND (COALESCE(prt1_1.a, p2_1.a) <= 510))
-                           ->  Sort
-                                 Sort Key: prt1_1.a, prt1_1.b
-                                 ->  Seq Scan on prt1_p2 prt1_1
-                           ->  Sort
-                                 Sort Key: p2_1.a, p2_1.b
-                                 ->  Seq Scan on prt2_p2 p2_1
-         ->  Group
-               Group Key: (COALESCE(prt1_2.a, p2_2.a)), (COALESCE(prt1_2.b, p2_2.b))
-               ->  Sort
-                     Sort Key: (COALESCE(prt1_2.a, p2_2.a)), (COALESCE(prt1_2.b, p2_2.b))
-                     ->  Merge Full Join
-                           Merge Cond: ((prt1_2.a = p2_2.a) AND (prt1_2.b = p2_2.b))
-                           Filter: ((COALESCE(prt1_2.a, p2_2.a) >= 490) AND (COALESCE(prt1_2.a, p2_2.a) <= 510))
-                           ->  Sort
-                                 Sort Key: prt1_2.a, prt1_2.b
-                                 ->  Seq Scan on prt1_p3 prt1_2
-                           ->  Sort
-                                 Sort Key: p2_2.a, p2_2.b
-                                 ->  Seq Scan on prt2_p3 p2_2
-(43 rows)
+         ->  Append
+               ->  Merge Full Join
+                     Merge Cond: ((prt1_1.a = p2_1.a) AND (prt1_1.b = p2_1.b))
+                     Filter: ((COALESCE(prt1_1.a, p2_1.a) >= 490) AND (COALESCE(prt1_1.a, p2_1.a) <= 510))
+                     ->  Sort
+                           Sort Key: prt1_1.a, prt1_1.b
+                           ->  Seq Scan on prt1_p1 prt1_1
+                     ->  Sort
+                           Sort Key: p2_1.a, p2_1.b
+                           ->  Seq Scan on prt2_p1 p2_1
+               ->  Merge Full Join
+                     Merge Cond: ((prt1_2.a = p2_2.a) AND (prt1_2.b = p2_2.b))
+                     Filter: ((COALESCE(prt1_2.a, p2_2.a) >= 490) AND (COALESCE(prt1_2.a, p2_2.a) <= 510))
+                     ->  Sort
+                           Sort Key: prt1_2.a, prt1_2.b
+                           ->  Seq Scan on prt1_p2 prt1_2
+                     ->  Sort
+                           Sort Key: p2_2.a, p2_2.b
+                           ->  Seq Scan on prt2_p2 p2_2
+               ->  Merge Full Join
+                     Merge Cond: ((prt1_3.b = p2_3.b) AND (prt1_3.a = p2_3.a))
+                     Filter: ((COALESCE(prt1_3.a, p2_3.a) >= 490) AND (COALESCE(prt1_3.a, p2_3.a) <= 510))
+                     ->  Sort
+                           Sort Key: prt1_3.b, prt1_3.a
+                           ->  Seq Scan on prt1_p3 prt1_3
+                     ->  Sort
+                           Sort Key: p2_3.b, p2_3.a
+                           ->  Seq Scan on prt2_p3 p2_3
+(32 rows)
 
 SELECT a, b FROM prt1 FULL JOIN prt2 p2(b,a,c) USING(a,b)
   WHERE a BETWEEN 490 AND 510
diff --git a/src/test/regress/expected/union.out b/src/test/regress/expected/union.out
index 75f78db8f5..63b52c065f 100644
--- a/src/test/regress/expected/union.out
+++ b/src/test/regress/expected/union.out
@@ -1291,24 +1291,22 @@ select distinct q1 from
    union all
    select distinct * from int8_tbl i82) ss
 where q2 = q2;
-                        QUERY PLAN                        
-----------------------------------------------------------
- Unique
-   ->  Merge Append
-         Sort Key: "*SELECT* 1".q1
+                     QUERY PLAN                     
+----------------------------------------------------
+ HashAggregate
+   Group Key: "*SELECT* 1".q1
+   ->  Append
          ->  Subquery Scan on "*SELECT* 1"
-               ->  Unique
-                     ->  Sort
-                           Sort Key: i81.q1, i81.q2
-                           ->  Seq Scan on int8_tbl i81
-                                 Filter: (q2 IS NOT NULL)
+               ->  HashAggregate
+                     Group Key: i81.q1, i81.q2
+                     ->  Seq Scan on int8_tbl i81
+                           Filter: (q2 IS NOT NULL)
          ->  Subquery Scan on "*SELECT* 2"
-               ->  Unique
-                     ->  Sort
-                           Sort Key: i82.q1, i82.q2
-                           ->  Seq Scan on int8_tbl i82
-                                 Filter: (q2 IS NOT NULL)
-(15 rows)
+               ->  HashAggregate
+                     Group Key: i82.q1, i82.q2
+                     ->  Seq Scan on int8_tbl i82
+                           Filter: (q2 IS NOT NULL)
+(13 rows)
 
 select distinct q1 from
   (select distinct * from int8_tbl i81
@@ -1327,24 +1325,22 @@ select distinct q1 from
    union all
    select distinct * from int8_tbl i82) ss
 where -q1 = q2;
-                       QUERY PLAN                       
---------------------------------------------------------
- Unique
-   ->  Merge Append
-         Sort Key: "*SELECT* 1".q1
+                    QUERY PLAN                    
+--------------------------------------------------
+ HashAggregate
+   Group Key: "*SELECT* 1".q1
+   ->  Append
          ->  Subquery Scan on "*SELECT* 1"
-               ->  Unique
-                     ->  Sort
-                           Sort Key: i81.q1, i81.q2
-                           ->  Seq Scan on int8_tbl i81
-                                 Filter: ((- q1) = q2)
+               ->  HashAggregate
+                     Group Key: i81.q1, i81.q2
+                     ->  Seq Scan on int8_tbl i81
+                           Filter: ((- q1) = q2)
          ->  Subquery Scan on "*SELECT* 2"
-               ->  Unique
-                     ->  Sort
-                           Sort Key: i82.q1, i82.q2
-                           ->  Seq Scan on int8_tbl i82
-                                 Filter: ((- q1) = q2)
-(15 rows)
+               ->  HashAggregate
+                     Group Key: i82.q1, i82.q2
+                     ->  Seq Scan on int8_tbl i82
+                           Filter: ((- q1) = q2)
+(13 rows)
 
 select distinct q1 from
   (select distinct * from int8_tbl i81
diff --git a/src/test/regress/sql/aggregates.sql b/src/test/regress/sql/aggregates.sql
index ed2d6b3bdf..26fe382364 100644
--- a/src/test/regress/sql/aggregates.sql
+++ b/src/test/regress/sql/aggregates.sql
@@ -999,6 +999,105 @@ SELECT balk(hundred) FROM tenk1;
 
 ROLLBACK;
 
+-- GROUP BY optimization by reorder columns
+
+SELECT
+	i AS id,
+	i/2 AS p,
+	format('%60s', i%2) AS v,
+	i/4 AS c,
+	i/8 AS d,
+	(random() * (10000/8))::int as e --the same as d but no correlation with p
+	INTO btg
+FROM
+	generate_series(1, 10000) i;
+
+VACUUM btg;
+ANALYZE btg;
+
+-- GROUP BY optimization by reorder columns by frequency
+
+SET enable_hashagg=off;
+SET max_parallel_workers= 0;
+SET max_parallel_workers_per_gather = 0;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c ORDER BY v, p, c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c ORDER BY v, p, d ,c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, d, c ORDER BY p, v, d ,c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, d, e;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, e, d;
+
+CREATE STATISTICS btg_dep ON d, e, p FROM btg;
+ANALYZE btg;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, d, e;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, e, d;
+
+
+-- GROUP BY optimization by reorder columns by index scan
+
+CREATE INDEX ON btg(p, v);
+SET enable_seqscan=off;
+SET enable_bitmapscan=off;
+VACUUM btg;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY p, v ORDER BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p ORDER BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, p, c ORDER BY p, v;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, c, p, d;
+
+EXPLAIN (COSTS off)
+SELECT count(*) FROM btg GROUP BY v, c, p, d ORDER BY p, v;
+
+DROP TABLE btg;
+
+RESET enable_hashagg;
+RESET max_parallel_workers;
+RESET max_parallel_workers_per_gather;
+RESET enable_seqscan;
+RESET enable_bitmapscan;
+
+
 -- Secondly test the case of a parallel aggregate combiner function
 -- returning NULL. For that use normal transition function, but a
 -- combiner function returning NULL.
diff --git a/src/test/regress/sql/incremental_sort.sql b/src/test/regress/sql/incremental_sort.sql
index d8768a6b54..1de163e039 100644
--- a/src/test/regress/sql/incremental_sort.sql
+++ b/src/test/regress/sql/incremental_sort.sql
@@ -213,7 +213,7 @@ set parallel_tuple_cost = 0;
 set max_parallel_workers_per_gather = 2;
 
 create table t (a int, b int, c int);
-insert into t select mod(i,10),mod(i,10),i from generate_series(1,10000) s(i);
+insert into t select mod(i,10),mod(i,10),i from generate_series(1,60000) s(i);
 create index on t (a);
 analyze t;
 

Reply via email to