Hi, On Wed, Nov 13, 2024 at 09:25:37AM +0900, Michael Paquier wrote: > So that seems worth the addition, especially for > smaller sizes where this is 6 times faster here.
So, something like v12 in pg_memory_is_all_zeros_v12() in allzeros_small.c attached? If so, that gives us: == with BLCKSZ 32 $ /usr/local/gcc-14.1.0/bin/gcc-14.1.0 -march=native -O2 allzeros_small.c -o allzeros_small ; ./allzeros_small byte per byte: done in 22421 nanoseconds size_t: done in 7269 nanoseconds (3.08447 times faster than byte per byte) SIMD v10: done in 6349 nanoseconds (3.53142 times faster than byte per byte) SIMD v11: done in 22080 nanoseconds (1.01544 times faster than byte per byte) SIMD v12: done in 5595 nanoseconds (4.00733 times faster than byte per byte) == with BLCKSZ 63 $ /usr/local/gcc-14.1.0/bin/gcc-14.1.0 -march=native -O2 allzeros_small.c -o allzeros_small ; ./allzeros_small byte per byte: done in 29525 nanoseconds size_t: done in 11232 nanoseconds (2.62865 times faster than byte per byte) SIMD v10: done in 10828 nanoseconds (2.72673 times faster than byte per byte) SIMD v11: done in 42056 nanoseconds (0.70204 times faster than byte per byte) SIMD v12: done in 10468 nanoseconds (2.8205 times faster than byte per byte) == with BLCKSZ 256 $ /usr/local/gcc-14.1.0/bin/gcc-14.1.0 -march=native -O2 allzeros_small.c -o allzeros_small ; ./allzeros_small byte per byte: done in 120483 nanoseconds size_t: done in 23098 nanoseconds (5.21617 times faster than byte per byte) SIMD v10: done in 6737 nanoseconds (17.8838 times faster than byte per byte) SIMD v11: done in 6621 nanoseconds (18.1971 times faster than byte per byte) SIMD v12: done in 6519 nanoseconds (18.4818 times faster than byte per byte) == with BLCKSZ 8192 $ /usr/local/gcc-14.1.0/bin/gcc-14.1.0 -march=native -O2 allzeros_small.c -o allzeros_small ; ./allzeros_small byte per byte: done in 3393459 nanoseconds size_t: done in 707304 nanoseconds (4.79774 times faster than byte per byte) SIMD v10: done in 233559 nanoseconds (14.5293 times faster than byte per byte) SIMD v11: done in 225951 nanoseconds (15.0186 times faster than byte per byte) SIMD v12: done in 225766 nanoseconds (15.0309 times faster than byte per byte) That's better for small size but given the extra len checks that has been added I think we're back to David's point in [1]: What if the function is not inlined for some reason? So, out of curiosity, let's see what happens if not inlined in [2] (see the -O2 -DNOT_INLINE compiler window): - if a[3]: it looks like gcc is smart enough to create an optimized version for that size using constant propagation - if a[63]: Same as above - if a[256]: Same as above - if a[8192]: Same as above I did a quick check with clang and it looks like it is not as smart as gcc for the non inline case. Anyway it's not like we have the choice: we need (at least) one len check for safety reason (to not crash or read invalid data). So, I'd vote for pg_memory_is_all_zeros_v12() then, thoughts? [1]: https://www.postgresql.org/message-id/CAApHDvp2jx_%3DpFbgj-O1_ZmzP9WOZKfwLzZrS_%3DZmbsqMQQ59g%40mail.gmail.com [2]: https://godbolt.org/z/8s44GKqcc Regards, -- Bertrand Drouvot PostgreSQL Contributors Team RDS Open Source Databases Amazon Web Services: https://aws.amazon.com
#include <stdbool.h> #include <stddef.h> #include <string.h> #include <stdio.h> #include <stdint.h> #include <time.h> #include <immintrin.h> #define BLCKSZ 32 #define LOOPS 1000 static inline bool allzeros_byte_per_byte(const void *ptr, size_t len) { const unsigned char *p = (const unsigned char *) ptr; const unsigned char *end = &p[len]; while (p < end) { if (*p++ != 0) return false; } return true; } static inline bool allzeros_size_t(const void *ptr, size_t len) { const unsigned char *p = (const unsigned char *) ptr; const unsigned char *end = &p[len]; const unsigned char *aligned_end = (const unsigned char *) ((uintptr_t) end & (~(sizeof(size_t) - 1))); /* Compare bytes until the pointer "p" is aligned */ while (((uintptr_t) p & (sizeof(size_t) - 1)) != 0) { if (p == end) return true; if (*p++ != 0) return false; } /* * Compare remaining size_t-aligned chunks. * * aligned_end cant' be > end as we ensured to take care of len < 8 (in * the len < 64 check below). So, no risk to read beyond the memory area. */ for (; p < aligned_end; p += sizeof(size_t)) { if (*(size_t *) p != 0) return false; } /* Compare remaining bytes until the end */ while (p < end) { if (*p++ != 0) return false; } return true; } static inline bool pg_memory_is_all_zeros_v10(const void *ptr, size_t len) { const unsigned char *p = (const unsigned char *) ptr; const unsigned char *end = &p[len]; const unsigned char *aligned_end = (const unsigned char *) ((uintptr_t) end & (~(sizeof(size_t) - 1))); /* Compare bytes until the pointer "p" is aligned */ while (((uintptr_t) p & (sizeof(size_t) - 1)) != 0) { if (p == end) return true; if (*p++ != 0) return false; } /* * Compare 8 * sizeof(size_t) chunks at once. * * For performance reasons, we manually unroll this loop and purposefully * use bitwise-ORs to combine each comparison. This prevents boolean * short-circuiting and lets the compiler know that it's safe to access * all 8 elements regardless of the result of the other comparisons. This * seems to be enough to coax a few compilers into using SIMD * instructions. * * There is no risk to read beyond the memory area thanks to the len < 64 * check done below. */ for (; p < aligned_end - (sizeof(size_t) * 7); p += sizeof(size_t) * 8) { if ((((size_t *) p)[0] != 0) | (((size_t *) p)[1] != 0) | (((size_t *) p)[2] != 0) | (((size_t *) p)[3] != 0) | (((size_t *) p)[4] != 0) | (((size_t *) p)[5] != 0) | (((size_t *) p)[6] != 0) | (((size_t *) p)[7] != 0)) return false; } /* * Compare remaining size_t-aligned chunks. * * aligned_end cant' be > end as we ensured to take care of len < 8 (in * the len < 64 check below). So, no risk to read beyond the memory area. */ for (; p < aligned_end; p += sizeof(size_t)) { if (*(size_t *) p != 0) return false; } /* Compare remaining bytes until the end */ while (p < end) { if (*p++ != 0) return false; } return true; } static inline bool pg_memory_is_all_zeros_v11(const void *ptr, size_t len) { const unsigned char *p = (const unsigned char *) ptr; const unsigned char *end = &p[len]; const unsigned char *aligned_end = (const unsigned char *) ((uintptr_t) end & (~(sizeof(size_t) - 1))); /* * For len < 64, compare byte per byte to ensure we'll not read beyond the * memory area. */ if (len < sizeof(size_t) * 8) { while (p < end) { if (*p++ != 0) return false; } return true; } /* Compare bytes until the pointer "p" is aligned */ while (((uintptr_t) p & (sizeof(size_t) - 1)) != 0) { if (p == end) return true; if (*p++ != 0) return false; } /* * Compare 8 * sizeof(size_t) chunks at once. * * For performance reasons, we manually unroll this loop and purposefully * use bitwise-ORs to combine each comparison. This prevents boolean * short-circuiting and lets the compiler know that it's safe to access * all 8 elements regardless of the result of the other comparisons. This * seems to be enough to coax a few compilers into using SIMD * instructions. * * There is no risk to read beyond the memory area thanks to the len < 64 * check done below. */ for (; p < aligned_end - (sizeof(size_t) * 7); p += sizeof(size_t) * 8) { if ((((size_t *) p)[0] != 0) | (((size_t *) p)[1] != 0) | (((size_t *) p)[2] != 0) | (((size_t *) p)[3] != 0) | (((size_t *) p)[4] != 0) | (((size_t *) p)[5] != 0) | (((size_t *) p)[6] != 0) | (((size_t *) p)[7] != 0)) return false; } /* * Compare remaining size_t-aligned chunks. * * aligned_end cant' be > end as we ensured to take care of len < 8 (in * the len < 64 check below). So, no risk to read beyond the memory area. */ for (; p < aligned_end; p += sizeof(size_t)) { if (*(size_t *) p != 0) return false; } /* Compare remaining bytes until the end */ while (p < end) { if (*p++ != 0) return false; } return true; } static inline bool pg_memory_is_all_zeros_v12(const void *ptr, size_t len) { const unsigned char *p = (const unsigned char *) ptr; const unsigned char *end = &p[len]; const unsigned char *aligned_end = (const unsigned char *) ((uintptr_t) end & (~(sizeof(size_t) - 1))); if (len < sizeof(size_t)) // < 8 bytes { while (p < end) { if (*p++ != 0) return false; } return true; } if (len < sizeof(size_t) * 8) // 8-63 bytes { while (((uintptr_t) p & (sizeof(size_t) - 1)) != 0) { if (p == end) return true; if (*p++ != 0) return false; } for (; p < aligned_end; p += sizeof(size_t)) { if (*(size_t *) p != 0) return false; } while (p < end) { if (*p++ != 0) return false; } return true; } /* Compare bytes until the pointer "p" is aligned */ while (((uintptr_t) p & (sizeof(size_t) - 1)) != 0) { if (p == end) return true; if (*p++ != 0) return false; } /* * Compare 8 * sizeof(size_t) chunks at once. * * For performance reasons, we manually unroll this loop and purposefully * use bitwise-ORs to combine each comparison. This prevents boolean * short-circuiting and lets the compiler know that it's safe to access * all 8 elements regardless of the result of the other comparisons. This * seems to be enough to coax a few compilers into using SIMD * instructions. * * There is no risk to read beyond the memory area thanks to the len < 64 * check done below. */ for (; p < aligned_end - (sizeof(size_t) * 7); p += sizeof(size_t) * 8) { if ((((size_t *) p)[0] != 0) | (((size_t *) p)[1] != 0) | (((size_t *) p)[2] != 0) | (((size_t *) p)[3] != 0) | (((size_t *) p)[4] != 0) | (((size_t *) p)[5] != 0) | (((size_t *) p)[6] != 0) | (((size_t *) p)[7] != 0)) return false; } /* * Compare remaining size_t-aligned chunks. * * aligned_end cant' be > end as we ensured to take care of len < 8 (in * the len < 64 check below). So, no risk to read beyond the memory area. */ for (; p < aligned_end; p += sizeof(size_t)) { if (*(size_t *) p != 0) return false; } /* Compare remaining bytes until the end */ while (p < end) { if (*p++ != 0) return false; } return true; } #define NANOSEC_PER_SEC 1000000000 // Returns difference in nanoseconds int64_t get_clock_diff(struct timespec *t1, struct timespec *t2) { int64_t nanosec = (t1->tv_sec - t2->tv_sec) * NANOSEC_PER_SEC; nanosec += (t1->tv_nsec - t2->tv_nsec); return nanosec; } int main() { size_t pagebytes[BLCKSZ] = {0}; volatile bool result; struct timespec start,end; int64_t byte_time, size_t_time; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for (int i = 0; i < LOOPS; i++) { result = allzeros_byte_per_byte(pagebytes, BLCKSZ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); byte_time = get_clock_diff(&end, &start); printf("byte per byte: done in %ld nanoseconds\n", byte_time); clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for (int i = 0; i < LOOPS; i++) { result = allzeros_size_t(pagebytes, BLCKSZ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); size_t_time = get_clock_diff(&end, &start); printf("size_t: done in %ld nanoseconds (%g times faster than byte per byte)\n", size_t_time, (double) byte_time / size_t_time); clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for (int i = 0; i < LOOPS; i++) { result = pg_memory_is_all_zeros_v10(pagebytes, BLCKSZ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); size_t_time = get_clock_diff(&end, &start); printf("SIMD v10: done in %ld nanoseconds (%g times faster than byte per byte)\n", size_t_time, (double) byte_time / size_t_time); clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for (int i = 0; i < LOOPS; i++) { result = pg_memory_is_all_zeros_v11(pagebytes, BLCKSZ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); size_t_time = get_clock_diff(&end, &start); printf("SIMD v11: done in %ld nanoseconds (%g times faster than byte per byte)\n", size_t_time, (double) byte_time / size_t_time); clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for (int i = 0; i < LOOPS; i++) { result = pg_memory_is_all_zeros_v12(pagebytes, BLCKSZ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); size_t_time = get_clock_diff(&end, &start); printf("SIMD v12: done in %ld nanoseconds (%g times faster than byte per byte)\n", size_t_time, (double) byte_time / size_t_time); return 0; }