On Sat, Nov 03, 2018 at 01:53:25PM +0100, Jesper Dangaard Brouer wrote: > > On Fri, 2 Nov 2018 22:20:24 +0800 Aaron Lu <aaron...@intel.com> wrote: > > > On Fri, Nov 02, 2018 at 12:40:37PM +0100, Jesper Dangaard Brouer wrote: > > > On Fri, 2 Nov 2018 13:23:56 +0800 > > > Aaron Lu <aaron...@intel.com> wrote: > > > > > > > On Thu, Nov 01, 2018 at 08:23:19PM +0000, Saeed Mahameed wrote: > > > > > On Thu, 2018-11-01 at 23:27 +0800, Aaron Lu wrote: > > > > > > On Thu, Nov 01, 2018 at 10:22:13AM +0100, Jesper Dangaard Brouer > > > > > > wrote: > > > > > > ... ... > > > > > > > Section copied out: > > > > > > > > > > > > > > mlx5e_poll_tx_cq > > > > > > > | > > > > > > > --16.34%--napi_consume_skb > > > > > > > | > > > > > > > |--12.65%--__free_pages_ok > > > > > > > | | > > > > > > > | --11.86%--free_one_page > > > > > > > | | > > > > > > > | |--10.10% > > > > > > > --queued_spin_lock_slowpath > > > > > > > | | > > > > > > > | --0.65%--_raw_spin_lock > > > > > > > > > > > > This callchain looks like it is freeing higher order pages than > > > > > > order > > > > > > 0: > > > > > > __free_pages_ok is only called for pages whose order are bigger than > > > > > > 0. > > > > > > > > > > mlx5 rx uses only order 0 pages, so i don't know where these high > > > > > order > > > > > tx SKBs are coming from.. > > > > > > > > Perhaps here: > > > > __netdev_alloc_skb(), __napi_alloc_skb(), __netdev_alloc_frag() and > > > > __napi_alloc_frag() will all call page_frag_alloc(), which will use > > > > __page_frag_cache_refill() to get an order 3 page if possible, or fall > > > > back to an order 0 page if order 3 page is not available. > > > > > > > > I'm not sure if your workload will use the above code path though. > > > > > > TL;DR: this is order-0 pages (code-walk trough proof below) > > > > > > To Aaron, the network stack *can* call __free_pages_ok() with order-0 > > > pages, via: > > > > > > static void skb_free_head(struct sk_buff *skb) > > > { > > > unsigned char *head = skb->head; > > > > > > if (skb->head_frag) > > > skb_free_frag(head); > > > else > > > kfree(head); > > > } > > > > > > static inline void skb_free_frag(void *addr) > > > { > > > page_frag_free(addr); > > > } > > > > > > /* > > > * Frees a page fragment allocated out of either a compound or order 0 > > > page. > > > */ > > > void page_frag_free(void *addr) > > > { > > > struct page *page = virt_to_head_page(addr); > > > > > > if (unlikely(put_page_testzero(page))) > > > __free_pages_ok(page, compound_order(page)); > > > } > > > EXPORT_SYMBOL(page_frag_free); > > > > I think here is a problem - order 0 pages are freed directly to buddy, > > bypassing per-cpu-pages. This might be the reason lock contention > > appeared on free path. > > OMG - you just found a significant issue with the network stacks > interaction with the page allocator! This explains why I could not get > the PCP (Per-Cpu-Pages) system to have good performance, in my > performance networking benchmarks. As we are basically only using the > alloc side of PCP, and not the free side.
Exactly. > We have spend years adding different driver level recycle tricks to > avoid this code path getting activated, exactly because it is rather > slow and problematic that we hit this zone->lock. I can see when this code path is hit, it causes unnecessary taking of zone lock for order-0 pages and cause lock contention. > > > Can someone apply below diff and see if lock contention is gone? > > I have also applied and tested this patch, and yes the lock contention > is gone. As mentioned is it rather difficult to hit this code path, as > the driver page recycle mechanism tries to hide/avoid it, but mlx5 + > page_pool + CPU-map recycling have a known weakness that bypass the > driver page recycle scheme (that I've not fixed yet). I observed a 7% > speedup for this micro benchmark. Good to know this, I will prepare a formal patch. > > diff --git a/mm/page_alloc.c b/mm/page_alloc.c > > index e2ef1c17942f..65c0ae13215a 100644 > > --- a/mm/page_alloc.c > > +++ b/mm/page_alloc.c > > @@ -4554,8 +4554,14 @@ void page_frag_free(void *addr) > > { > > struct page *page = virt_to_head_page(addr); > > > > - if (unlikely(put_page_testzero(page))) > > - __free_pages_ok(page, compound_order(page)); > > + if (unlikely(put_page_testzero(page))) { > > + unsigned int order = compound_order(page); > > + > > + if (order == 0) > > + free_unref_page(page); > > + else > > + __free_pages_ok(page, order); > > + } > > } > > EXPORT_SYMBOL(page_frag_free); > > Thank you Aaron for spotting this!!! Which is impossible without your analysis :-)