On Fri, Nov 02, 2018 at 12:40:37PM +0100, Jesper Dangaard Brouer wrote: > On Fri, 2 Nov 2018 13:23:56 +0800 > Aaron Lu <aaron...@intel.com> wrote: > > > On Thu, Nov 01, 2018 at 08:23:19PM +0000, Saeed Mahameed wrote: > > > On Thu, 2018-11-01 at 23:27 +0800, Aaron Lu wrote: > > > > On Thu, Nov 01, 2018 at 10:22:13AM +0100, Jesper Dangaard Brouer > > > > wrote: > > > > ... ... > > > > > Section copied out: > > > > > > > > > > mlx5e_poll_tx_cq > > > > > | > > > > > --16.34%--napi_consume_skb > > > > > | > > > > > |--12.65%--__free_pages_ok > > > > > | | > > > > > | --11.86%--free_one_page > > > > > | | > > > > > | |--10.10% > > > > > --queued_spin_lock_slowpath > > > > > | | > > > > > | --0.65%--_raw_spin_lock > > > > > > > > This callchain looks like it is freeing higher order pages than order > > > > 0: > > > > __free_pages_ok is only called for pages whose order are bigger than > > > > 0. > > > > > > mlx5 rx uses only order 0 pages, so i don't know where these high order > > > tx SKBs are coming from.. > > > > Perhaps here: > > __netdev_alloc_skb(), __napi_alloc_skb(), __netdev_alloc_frag() and > > __napi_alloc_frag() will all call page_frag_alloc(), which will use > > __page_frag_cache_refill() to get an order 3 page if possible, or fall > > back to an order 0 page if order 3 page is not available. > > > > I'm not sure if your workload will use the above code path though. > > TL;DR: this is order-0 pages (code-walk trough proof below) > > To Aaron, the network stack *can* call __free_pages_ok() with order-0 > pages, via: > > static void skb_free_head(struct sk_buff *skb) > { > unsigned char *head = skb->head; > > if (skb->head_frag) > skb_free_frag(head); > else > kfree(head); > } > > static inline void skb_free_frag(void *addr) > { > page_frag_free(addr); > } > > /* > * Frees a page fragment allocated out of either a compound or order 0 page. > */ > void page_frag_free(void *addr) > { > struct page *page = virt_to_head_page(addr); > > if (unlikely(put_page_testzero(page))) > __free_pages_ok(page, compound_order(page)); > } > EXPORT_SYMBOL(page_frag_free);
I think here is a problem - order 0 pages are freed directly to buddy, bypassing per-cpu-pages. This might be the reason lock contention appeared on free path. Can someone apply below diff and see if lock contention is gone? diff --git a/mm/page_alloc.c b/mm/page_alloc.c index e2ef1c17942f..65c0ae13215a 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -4554,8 +4554,14 @@ void page_frag_free(void *addr) { struct page *page = virt_to_head_page(addr); - if (unlikely(put_page_testzero(page))) - __free_pages_ok(page, compound_order(page)); + if (unlikely(put_page_testzero(page))) { + unsigned int order = compound_order(page); + + if (order == 0) + free_unref_page(page); + else + __free_pages_ok(page, order); + } } EXPORT_SYMBOL(page_frag_free); > Notice for the mlx5 driver it support several RX-memory models, so it > can be hard to follow, but from the perf report output we can see that > is uses mlx5e_skb_from_cqe_linear, which use build_skb. > > --13.63%--mlx5e_skb_from_cqe_linear > | > --5.02%--build_skb > | > --1.85%--__build_skb > | > --1.00%--kmem_cache_alloc > > /* build_skb() is wrapper over __build_skb(), that specifically > * takes care of skb->head and skb->pfmemalloc > * This means that if @frag_size is not zero, then @data must be backed > * by a page fragment, not kmalloc() or vmalloc() > */ > struct sk_buff *build_skb(void *data, unsigned int frag_size) > { > struct sk_buff *skb = __build_skb(data, frag_size); > > if (skb && frag_size) { > skb->head_frag = 1; > if (page_is_pfmemalloc(virt_to_head_page(data))) > skb->pfmemalloc = 1; > } > return skb; > } > EXPORT_SYMBOL(build_skb); > > It still doesn't prove, that the @data is backed by by a order-0 page. > For the mlx5 driver is uses mlx5e_page_alloc_mapped -> > page_pool_dev_alloc_pages(), and I can see perf report using > __page_pool_alloc_pages_slow(). > > The setup for page_pool in mlx5 uses order=0. > > /* Create a page_pool and register it with rxq */ > pp_params.order = 0; > pp_params.flags = 0; /* No-internal DMA mapping in page_pool */ > pp_params.pool_size = pool_size; > pp_params.nid = cpu_to_node(c->cpu); > pp_params.dev = c->pdev; > pp_params.dma_dir = rq->buff.map_dir; > > /* page_pool can be used even when there is no rq->xdp_prog, > * given page_pool does not handle DMA mapping there is no > * required state to clear. And page_pool gracefully handle > * elevated refcnt. > */ > rq->page_pool = page_pool_create(&pp_params); > if (IS_ERR(rq->page_pool)) { > err = PTR_ERR(rq->page_pool); > rq->page_pool = NULL; > goto err_free; > } > err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq, > MEM_TYPE_PAGE_POOL, rq->page_pool); Thanks for the detailed analysis, I'll need more time to understand the whole picture :-)