Reid Nichol wrote:
> Point of fact, Mathematics has been proven to have the option to be
> either consistent OR complete.
Axioms:
Empty set -- this is consistent.
        There is nothing there to be inconsistent.

Foo and NOT-Foo -- this is complete
        From these two little axioms all true statements can be derived.
                (and all the false ones too)

So what?
Going from those trivial cases to the whole of 19th century math is more
than fits into one mind.
This is now the 21st century.

Reply via email to