On 02/11/2015 02:54 PM, Matt Turner wrote: > We propagate negations to the right-most leaves of the multiplication > expression trees: > > - mul(neg(x), neg(y)) -> mul(x, y) > - mul(neg(x), y) -> neg(mul(x, y)) > - mul(x, neg(y)) -> neg(mul(x, y)) > > total instructions in shared programs: 5943123 -> 5937229 (-0.10%) > instructions in affected programs: 868221 -> 862327 (-0.68%) > helped: 4518 > HURT: 356 > GAINED: 1
This seems very counter intuitive. Why does this help? It seems like the negate modifier on the multiplication sources should be free... how do we get cheaper than free? :) > --- > src/glsl/opt_algebraic.cpp | 14 ++++++++++++++ > 1 file changed, 14 insertions(+) > > diff --git a/src/glsl/opt_algebraic.cpp b/src/glsl/opt_algebraic.cpp > index 7bc65da..aecd6e1 100644 > --- a/src/glsl/opt_algebraic.cpp > +++ b/src/glsl/opt_algebraic.cpp > @@ -514,6 +514,20 @@ ir_algebraic_visitor::handle_expression(ir_expression > *ir) > if (is_vec_negative_one(op_const[1])) > return neg(ir->operands[0]); > > + if (op_expr[0] && op_expr[0]->operation == ir_unop_neg) { > + if (op_expr[1] && op_expr[1]->operation == ir_unop_neg) { > + /* mul(neg(x), neg(y)) -> mul(x, y) */ > + return mul(op_expr[0]->operands[0], op_expr[1]->operands[0]); > + } > + > + /* mul(neg(x), y) -> neg(mul(x, y)) */ > + return neg(mul(op_expr[0]->operands[0], ir->operands[1])); > + } > + > + /* mul(x, neg(y)) -> neg(mul(x, y)) */ > + if (op_expr[1] && op_expr[1]->operation == ir_unop_neg) { > + return neg(mul(ir->operands[0], op_expr[1]->operands[0])); > + } > > /* Reassociate multiplication of constants so that we can do > * constant folding. > _______________________________________________ mesa-dev mailing list mesa-dev@lists.freedesktop.org http://lists.freedesktop.org/mailman/listinfo/mesa-dev