Whew! Other than a few minor things below, Reviewed-by: Connor Abbott <cwabbo...@gmail.com>
I tried to understand it all as much as I could, but it is rather tricky... but I can't suggest anything to make it easier to understand, after all the paper itself is rather tricky and your comments help a lot. If anyone has any ideas, please say something... On Tue, Dec 16, 2014 at 1:05 AM, Jason Ekstrand <ja...@jlekstrand.net> wrote: > This commit rewrites the out-of-SSA pass to not be nearly as naieve. It's > based on "Revisiting Out-of-SSA Translation for Correctness, Code Quality, > and Efficiency" by Boissinot et. al. It should be fairly close to > state-of-the art. > --- > src/glsl/nir/nir_from_ssa.c | 793 > +++++++++++++++++++++++++++++++++++++++----- > 1 file changed, 715 insertions(+), 78 deletions(-) > > diff --git a/src/glsl/nir/nir_from_ssa.c b/src/glsl/nir/nir_from_ssa.c > index a26f0c4..62a54fe 100644 > --- a/src/glsl/nir/nir_from_ssa.c > +++ b/src/glsl/nir/nir_from_ssa.c > @@ -28,54 +28,474 @@ > #include "nir.h" > > /* > - * Implements a quick-and-dirty out-of-ssa pass. > + * This file implements an out-of-SSA pass as described in "Revisiting > + * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by > + * Boissinot et. al. > */ > > struct from_ssa_state { > void *mem_ctx; > void *dead_ctx; > struct hash_table *ssa_table; > - nir_function_impl *current_impl; > + struct hash_table *merge_node_table; > + nir_instr *instr; > + nir_function_impl *impl; > }; > > +/* Returns true if a dominates b */ > static bool > -rewrite_ssa_src(nir_src *src, void *void_state) > +ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b) > +{ > + if (a->live_index == 0) { > + /* SSA undefs always dominate */ > + return true; > + } else if (b->live_index < a->live_index) { > + return false; > + } else if (a->parent_instr->block == b->parent_instr->block) { > + return a->live_index <= b->live_index; > + } else { > + nir_block *block = b->parent_instr->block; > + while (block->imm_dom != NULL) { > + if (block->imm_dom == a->parent_instr->block) > + return true; > + block = block->imm_dom; > + } > + return false; > + } > +} > + > + > +/* The following data structure, which I have named merge_set is a way of > + * representing a set registers of non-interfering registers. This is > + * based on the concept of a "dominence forest" presented in "Fast Copy > + * Coalescing and Live-Range Identification" by Budimlic et. al. but the > + * implementation concept is taken from "Revisiting Out-of-SSA Translation > + * for Correctness, Code Quality, and Efficiency" by Boissinot et. al.. > + * > + * Each SSA definition is associated with a merge_node and the association > + * is represented by a combination of a hash table and the "def" parameter > + * in the merge_node structure. The merge_set stores a linked list of > + * merge_node's in dominence order of the ssa definitions. (Since the > + * liveness analysis pass indexes the SSA values in dominence order for us, > + * this is an easy thing to keep up.) It is assumed that no pair of the > + * nodes in a given set interfere. Merging two sets or checking for > + * interference can be done in a single linear-time merge-sort walk of the > + * two lists of nodes. > + */ > +struct merge_set; > + > +typedef struct { > + struct exec_node node; > + struct merge_set *set; > + nir_ssa_def *def; > +} merge_node; > + > +typedef struct merge_set { > + struct exec_list nodes; > + unsigned size; > + nir_register *reg; > +} merge_set; > + > +#if 0 > +static void > +merge_set_dump(merge_set *set, FILE *fp) > +{ > + nir_ssa_def *dom[set->size]; > + int dom_idx = -1; > + > + foreach_list_typed(merge_node, node, node, &set->nodes) { > + while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) > + dom_idx--; > + > + for (int i = 0; i <= dom_idx; i++) > + fprintf(fp, " "); > + > + if (node->def->name) > + fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name); > + else > + fprintf(fp, "ssa_%d\n", node->def->index); > + > + dom[++dom_idx] = node->def; > + } > +} > +#endif > + > +static merge_node * > +get_merge_node(nir_ssa_def *def, struct from_ssa_state *state) > +{ > + struct hash_entry *entry = > + _mesa_hash_table_search(state->merge_node_table, > + _mesa_hash_pointer(def), def); > + if (entry) > + return entry->data; > + > + merge_set *set = ralloc(state->dead_ctx, merge_set); > + exec_list_make_empty(&set->nodes); > + set->size = 1; > + set->reg = NULL; > + > + merge_node *node = ralloc(state->dead_ctx, merge_node); > + node->set = set; > + node->def = def; > + exec_list_push_head(&set->nodes, &node->node); > + > + _mesa_hash_table_insert(state->merge_node_table, > + _mesa_hash_pointer(def), def, node); > + > + return node; > +} > + > +static bool > +merge_nodes_interfere(merge_node *a, merge_node *b) > +{ > + return nir_ssa_defs_interfere(a->def, b->def); > +} > + > +/* Merges b into a */ > +static merge_set * > +merge_merge_sets(merge_set *a, merge_set *b) > +{ > + struct exec_node *an = exec_list_get_head(&a->nodes); > + struct exec_node *bn = exec_list_get_head(&b->nodes); > + while (!exec_node_is_tail_sentinel(bn)) { > + merge_node *a_node = exec_node_data(merge_node, an, node); > + merge_node *b_node = exec_node_data(merge_node, bn, node); > + > + if (exec_node_is_tail_sentinel(an) || > + a_node->def->live_index > b_node->def->live_index) { > + struct exec_node *next = bn->next; > + exec_node_remove(bn); > + exec_node_insert_node_before(an, bn); > + exec_node_data(merge_node, bn, node)->set = a; > + bn = next; > + } else { > + an = an->next; > + } > + } > + > + a->size += b->size; > + b->size = 0; > + > + return a; > +} > + > +/* Checks for any interference between two merge sets > + * > + * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA > + * Translation for Correctness, Code Quality, and Efficiency" by > + * Boissinot et. al. > + */ > +static bool > +merge_sets_interfere(merge_set *a, merge_set *b) > +{ > + merge_node *dom[a->size + b->size]; > + int dom_idx = -1; > + > + struct exec_node *an = exec_list_get_head(&a->nodes); > + struct exec_node *bn = exec_list_get_head(&b->nodes); > + while (!exec_node_is_tail_sentinel(an) || > + !exec_node_is_tail_sentinel(bn)) { > + > + merge_node *current; > + if (exec_node_is_tail_sentinel(an)) { > + current = exec_node_data(merge_node, bn, node); > + bn = bn->next; > + } else if (exec_node_is_tail_sentinel(bn)) { > + current = exec_node_data(merge_node, an, node); > + an = an->next; > + } else { > + merge_node *a_node = exec_node_data(merge_node, an, node); > + merge_node *b_node = exec_node_data(merge_node, bn, node); > + > + if (a_node->def->live_index <= b_node->def->live_index) { > + current = a_node; > + an = an->next; > + } else { > + current = b_node; > + bn = bn->next; > + } > + } > + > + while (dom_idx >= 0 && > + !ssa_def_dominates(dom[dom_idx]->def, current->def)) > + dom_idx--; > + > + if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) > + return true; > + > + dom[++dom_idx] = current; > + } > + > + return false; > +} > + > +static nir_parallel_copy_instr * > +block_get_parallel_copy_at_end(nir_block *block, void *mem_ctx) > +{ > + nir_instr *last_instr = nir_block_last_instr(block); > + > + /* First we try and find a parallel copy if it already exists. If the > + * last instruction is a jump, it will be right before the jump; > + * otherwise, it will be the last instruction. > + */ > + nir_instr *pcopy_instr; > + if (last_instr != NULL && last_instr->type == nir_instr_type_jump) > + pcopy_instr = nir_instr_prev(last_instr); > + else > + pcopy_instr = last_instr; > + > + if (pcopy_instr != NULL && > + pcopy_instr->type == nir_instr_type_parallel_copy) { > + /* A parallel copy already exists. */ > + nir_parallel_copy_instr *pcopy = > nir_instr_as_parallel_copy(pcopy_instr); > + > + /* This parallel copy may be the copy for the beginning of some > + * block, so we need to check for that before we return it. > + */ > + if (pcopy->at_end) > + return pcopy; > + } > + > + /* At this point, we haven't found a suitable parallel copy, so we > + * have to create one. > + */ > + nir_parallel_copy_instr *pcopy = nir_parallel_copy_instr_create(mem_ctx); > + pcopy->at_end = true; > + > + if (last_instr && last_instr->type == nir_instr_type_jump) { > + nir_instr_insert_before(last_instr, &pcopy->instr); > + } else { > + nir_instr_insert_after_block(block, &pcopy->instr); > + } > + > + return pcopy; > +} > + > +static bool > +isolate_phi_nodes_block(nir_block *block, void *void_state) > { > struct from_ssa_state *state = void_state; > > - if (src->is_ssa) { > - struct hash_entry *entry = > - _mesa_hash_table_search(state->ssa_table, > - _mesa_hash_pointer(src->ssa), > - src->ssa); > - assert(entry); > - memset(src, 0, sizeof *src); > - src->reg.reg = (nir_register *)entry->data; > + nir_instr *last_phi_instr = NULL; > + nir_foreach_instr(block, instr) { > + /* Phi nodes only ever come at the start of a block */ > + if (instr->type != nir_instr_type_phi) > + break; > + > + last_phi_instr = instr; > + } > + > + /* If we don't have any phi's, then there's nothing for us to do. */ > + if (last_phi_instr == NULL) > + return true; > + > + /* If we have phi nodes, we need to create a parallel copy at the > + * start of this block but after the phi nodes. > + */ > + nir_parallel_copy_instr *block_pcopy = > + nir_parallel_copy_instr_create(state->dead_ctx); > + nir_instr_insert_after(last_phi_instr, &block_pcopy->instr); > + > + nir_foreach_instr(block, instr) { > + /* Phi nodes only ever come at the start of a block */ > + if (instr->type != nir_instr_type_phi) > + break; > + > + nir_phi_instr *phi = nir_instr_as_phi(instr); > + assert(phi->dest.is_ssa); > + foreach_list_typed(nir_phi_src, src, node, &phi->srcs) { > + nir_parallel_copy_instr *pcopy = > + block_get_parallel_copy_at_end(src->pred, state->dead_ctx); > + > + nir_parallel_copy_copy *copy = ralloc(state->dead_ctx, > + nir_parallel_copy_copy); > + exec_list_push_tail(&pcopy->copies, ©->node); > + > + copy->src = nir_src_copy(src->src, state->dead_ctx); > + _mesa_set_add(src->src.ssa->uses, > + _mesa_hash_pointer(&pcopy->instr), &pcopy->instr); > + > + copy->dest.is_ssa = true; > + nir_ssa_def_init(state->impl, &pcopy->instr, ©->dest.ssa, > + phi->dest.ssa.num_components, src->src.ssa->name); > + > + struct set_entry *entry = _mesa_set_search(src->src.ssa->uses, > + > _mesa_hash_pointer(instr), > + instr); > + if (entry) > + /* It is possible that a phi node can use the same source twice > + * but for different basic blocks. If that happens, entry will > + * be NULL because we already deleted it. This is safe > + * because, by the time the loop is done, we will have deleted > + * all of the sources of the phi from their respective use sets > + * and moved them to the parallel copy definitions. > + */ > + _mesa_set_remove(src->src.ssa->uses, entry); > + > + src->src.ssa = ©->dest.ssa; > + _mesa_set_add(copy->dest.ssa.uses, _mesa_hash_pointer(instr), > instr); > + } > + > + nir_parallel_copy_copy *copy = ralloc(state->dead_ctx, > + nir_parallel_copy_copy); > + exec_list_push_tail(&block_pcopy->copies, ©->node); > + > + copy->dest.is_ssa = true; > + nir_ssa_def_init(state->impl, &block_pcopy->instr, ©->dest.ssa, > + phi->dest.ssa.num_components, phi->dest.ssa.name); > + > + nir_src copy_dest_src = { > + .ssa = ©->dest.ssa, > + .is_ssa = true, > + }; > + nir_ssa_def_rewrite_uses(&phi->dest.ssa, copy_dest_src, > state->mem_ctx); > + > + copy->src.is_ssa = true; > + copy->src.ssa = &phi->dest.ssa; > + _mesa_set_add(phi->dest.ssa.uses, > + _mesa_hash_pointer(&block_pcopy->instr), > + &block_pcopy->instr); > + } > + > + return true; > +} > + > +static bool > +coalesce_phi_nodes_block(nir_block *block, void *void_state) > +{ > + struct from_ssa_state *state = void_state; > + > + nir_foreach_instr(block, instr) { > + /* Phi nodes only ever come at the start of a block */ > + if (instr->type != nir_instr_type_phi) > + break; > + > + nir_phi_instr *phi = nir_instr_as_phi(instr); > + > + assert(phi->dest.is_ssa); > + merge_node *dest_node = get_merge_node(&phi->dest.ssa, state); > + > + foreach_list_typed(nir_phi_src, src, node, &phi->srcs) { > + assert(src->src.is_ssa); > + merge_node *src_node = get_merge_node(src->src.ssa, state); > + if (src_node->set != dest_node->set) > + merge_merge_sets(dest_node->set, src_node->set); > + } > + } > + > + return true; > +} > + > +static void > +agressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, > + struct from_ssa_state *state) > +{ > + foreach_list_typed_safe(nir_parallel_copy_copy, copy, node, > &pcopy->copies) { > + if (!copy->src.is_ssa) > + continue; > + > + /* Don't try and coalesce these */ > + if (copy->dest.ssa.num_components != copy->src.ssa->num_components) > + continue; > + > + merge_node *src_node = get_merge_node(copy->src.ssa, state); > + merge_node *dest_node = get_merge_node(©->dest.ssa, state); > + > + if (src_node->set == dest_node->set) > + continue; > + > + if (!merge_sets_interfere(src_node->set, dest_node->set)) > + merge_merge_sets(src_node->set, dest_node->set); > + } > +} > + > +static bool > +agressive_coalesce_block(nir_block *block, void *void_state) > +{ > + struct from_ssa_state *state = void_state; > + > + nir_foreach_instr(block, instr) { > + /* Phi nodes only ever come at the start of a block */ > + if (instr->type != nir_instr_type_phi) { > + if (instr->type != nir_instr_type_parallel_copy) > + break; /* The parallel copy must be right after the phis */ > + > + nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr); > + > + agressive_coalesce_parallel_copy(pcopy, state); > + > + if (pcopy->at_end) > + return true; > + > + break; > + } > + } > + > + nir_instr *last_instr = nir_block_last_instr(block); > + if (last_instr && last_instr->type == nir_instr_type_parallel_copy) { > + nir_parallel_copy_instr *pcopy = > nir_instr_as_parallel_copy(last_instr); > + if (pcopy->at_end) > + agressive_coalesce_parallel_copy(pcopy, state); > } > > return true; > } > > static nir_register * > -reg_create_from_def(nir_ssa_def *def, struct from_ssa_state *state) > +get_register_for_ssa_def(nir_ssa_def *def, struct from_ssa_state *state) > +{ > + struct hash_entry *entry = > + _mesa_hash_table_search(state->merge_node_table, > + _mesa_hash_pointer(def), def); > + if (entry) { > + merge_node *node = (merge_node *)entry->data; > + > + /* If it doesn't have a register yet, create one. Note that all of > + * the things in the merge set should be the same so it doesn't > + * matter which node's definition we use. > + */ > + if (node->set->reg == NULL) { > + node->set->reg = nir_local_reg_create(state->impl); > + node->set->reg->name = def->name; > + node->set->reg->num_components = def->num_components; > + node->set->reg->num_array_elems = 0; > + } > + > + return node->set->reg; > + } > + > + entry = _mesa_hash_table_search(state->ssa_table, > + _mesa_hash_pointer(def), def); > + if (entry) { > + return (nir_register *)entry->data; > + } else { > + nir_register *reg = nir_local_reg_create(state->impl); > + reg->name = def->name; > + reg->num_components = def->num_components; > + reg->num_array_elems = 0; > + > + _mesa_hash_table_insert(state->ssa_table, > + _mesa_hash_pointer(def), def, reg); > + return reg; > + } > +} > + > +static bool > +rewrite_ssa_src(nir_src *src, void *void_state) > { > - nir_register *reg = nir_local_reg_create(state->current_impl); > - reg->name = def->name; > - reg->num_components = def->num_components; > - reg->num_array_elems = 0; > + struct from_ssa_state *state = void_state; > > - /* Might as well steal the use-def information from SSA */ > - _mesa_set_destroy(reg->uses, NULL); > - reg->uses = def->uses; > - _mesa_set_destroy(reg->if_uses, NULL); > - reg->if_uses = def->if_uses; > - _mesa_set_add(reg->defs, _mesa_hash_pointer(def->parent_instr), > - def->parent_instr); > + if (src->is_ssa) { > + /* We don't need to remove it from the uses set because that is going > + * away. We just need to add it to the one for the register. */ > + nir_register *reg = get_register_for_ssa_def(src->ssa, state); > + memset(src, 0, sizeof *src); > + src->reg.reg = reg; > > - /* Add the new register to the table and rewrite the destination */ > - _mesa_hash_table_insert(state->ssa_table, _mesa_hash_pointer(def), def, > reg); > + _mesa_set_add(reg->uses, _mesa_hash_pointer(state->instr), > state->instr); > + } > > - return reg; > + return true; > } > > static bool > @@ -84,82 +504,285 @@ rewrite_ssa_dest(nir_dest *dest, void *void_state) > struct from_ssa_state *state = void_state; > > if (dest->is_ssa) { > - nir_register *reg = reg_create_from_def(&dest->ssa, state); > + _mesa_set_destroy(dest->ssa.uses, NULL); > + _mesa_set_destroy(dest->ssa.if_uses, NULL); > + > + nir_register *reg = get_register_for_ssa_def(&dest->ssa, state); > memset(dest, 0, sizeof *dest); > dest->reg.reg = reg; > + > + _mesa_set_add(reg->defs, _mesa_hash_pointer(state->instr), > state->instr); > } > > return true; > } > > +/* Resolves ssa definitions to registers. While we're at it, we also > + * remove phi nodes and ssa_undef instructions > + */ > static bool > -convert_from_ssa_block(nir_block *block, void *void_state) > +resolve_registers_block(nir_block *block, void *void_state) > { > struct from_ssa_state *state = void_state; > > nir_foreach_instr_safe(block, instr) { > - if (instr->type == nir_instr_type_ssa_undef) { > - nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr); > - reg_create_from_def(&undef->def, state); > - exec_node_remove(&instr->node); > + state->instr = instr; > + nir_foreach_src(instr, rewrite_ssa_src, state); > + nir_foreach_dest(instr, rewrite_ssa_dest, state); > + > + if (instr->type == nir_instr_type_ssa_undef || > + instr->type == nir_instr_type_phi) { > + nir_instr_remove(instr); > ralloc_steal(state->dead_ctx, instr); > - } else { > - nir_foreach_src(instr, rewrite_ssa_src, state); > - nir_foreach_dest(instr, rewrite_ssa_dest, state); > + continue; > } > } > + state->instr = NULL; > > nir_if *following_if = nir_block_following_if(block); > - if (following_if) > - rewrite_ssa_src(&following_if->condition, state); > + if (following_if && following_if->condition.is_ssa) { > + nir_register *reg = > get_register_for_ssa_def(following_if->condition.ssa, > + state); > + memset(&following_if->condition, 0, sizeof following_if->condition); > + following_if->condition.reg.reg = reg; > + > + _mesa_set_add(reg->if_uses, _mesa_hash_pointer(following_if), > + following_if); > + } > > return true; > } > > +static void > +emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src, > + void *mem_ctx) > +{ > + assert(!dest_src.is_ssa && > + dest_src.reg.indirect == NULL && > + dest_src.reg.base_offset == 0); > + nir_dest dest = { > + .reg.reg = dest_src.reg.reg, > + .reg.indirect = NULL, > + .reg.base_offset = 0, > + .is_ssa = false, > + }; > + > + if (src.is_ssa) > + assert(src.ssa->num_components >= dest.reg.reg->num_components); > + else > + assert(src.reg.reg->num_components >= dest.reg.reg->num_components); > + > + nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov); > + mov->src[0].src = nir_src_copy(src, mem_ctx); > + mov->dest.dest = nir_dest_copy(dest, mem_ctx); > + mov->dest.write_mask = (1 << dest.reg.reg->num_components) - 1; > + > + nir_instr_insert_before(&pcopy->instr, &mov->instr); > +} > + > +/* Resolves a single parallel copy operation into a sequence of mov's > + * > + * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for > + * Correctness, Code Quality, and Efficiency" by Boissinot et. al.. > + * However, I never got the algorithm to work as written, so this version > + * is slightly modified. > + * > + * The algorithm works by playing this little shell game with the values. > + * We start by recording where every source value is and which source value > + * each destination value should recieve. We then grab any copy whose > + * destination is "empty", i.e. not used as a source, and do the following: > + * - Find where its source value currently lives > + * - Emit the move instruction > + * - Set the location of the source value to the destination > + * - Mark the location containing the source value > + * - Mark the destination as no longer needing to be copied > + * > + * When we run out of "empty" destinations, we have a cycle and so we > + * create a temporary register, copy to that register, and mark the value > + * we copied as living in that temporary. Now, the cycle is broken, so we > + * can continue with the above steps. > + */ > +static void > +resolve_parallel_copy(nir_parallel_copy_instr *pcopy, > + struct from_ssa_state *state) > +{ > + unsigned num_copies = 0; > + foreach_list_typed_safe(nir_parallel_copy_copy, copy, node, > &pcopy->copies) { > + /* Sources may be SSA */ > + if (!copy->src.is_ssa && copy->src.reg.reg == copy->dest.reg.reg) > + continue; > + > + /* Set both indices equal to UINT_MAX to mark them as not indexed yet. > */ Stale comment? > + num_copies++; > + } > + > + if (num_copies == 0) { > + /* Hooray, we don't need any copies! */ > + nir_instr_remove(&pcopy->instr); > + return; > + } > + > + /* The register/source corresponding to the given index */ > + nir_src values[num_copies * 2]; > + memset(values, 0, sizeof values); > + > + /* The current location of a given piece of data */ > + int loc[num_copies * 2]; > + > + /* The piece of data that the given piece of data is to be copied from */ > + int pred[num_copies * 2]; > + > + /* Initialize loc and pred. We will use -1 for "null" */ > + memset(loc, -1, sizeof loc); > + memset(pred, -1, sizeof pred); > + > + /* The destinations we have yet to properly fill */ > + int to_do[num_copies * 2]; > + int to_do_idx = -1; > + > + /* Now we set everything up: > + * - All values get assigned a temporary index > + * - Current locations are set from sources > + * - Predicessors are recorded from sources and destinations > + */ > + int num_vals = 0; > + foreach_list_typed(nir_parallel_copy_copy, copy, node, &pcopy->copies) { > + /* Sources may be SSA */ > + if (!copy->src.is_ssa && copy->src.reg.reg == copy->dest.reg.reg) > + continue; > + > + int src_idx = -1; > + for (int i = 0; i < num_vals; ++i) { > + if (nir_srcs_equal(values[i], copy->src)) > + src_idx = i; > + } > + if (src_idx < 0) { > + src_idx = num_vals++; > + values[src_idx] = copy->src; > + } > + > + nir_src dest_src = { > + .reg.reg = copy->dest.reg.reg, > + .reg.indirect = NULL, > + .reg.base_offset = 0, > + .is_ssa = false, > + }; > + > + int dest_idx = -1; > + for (int i = 0; i < num_vals; ++i) { > + if (nir_srcs_equal(values[i], dest_src)) > + dest_idx = i; Can we add an "assert(pred[dest_idx] == -1);" here to check that we don't repeat the same destination more than once in the parallel copy (plus a comment explaining what the assertion checks)? More sanity checks are always better for tricky code like this. > + } > + if (dest_idx < 0) { > + dest_idx = num_vals++; > + values[dest_idx] = dest_src; > + } > + > + loc[src_idx] = src_idx; > + pred[dest_idx] = src_idx; > + > + to_do[++to_do_idx] = dest_idx; > + } > + > + /* Currently empty destinations we can go ahead and fill */ > + int ready[num_copies * 2]; > + int ready_idx = -1; > + > + /* Mark the ones that are ready for copying. We know an index is a > + * destination if it has a predecessor and it's ready for copying if > + * it's not marked as containing data. > + */ > + for (int i = 0; i < num_vals; i++) { > + if (pred[i] != -1 && loc[i] == -1) > + ready[++ready_idx] = i; > + } > + > + while (to_do_idx >= 0) { > + while (ready_idx >= 0) { > + int b = ready[ready_idx--]; > + int a = pred[b]; > + emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx); > + > + /* If any other copies want a they can find it at b */ > + loc[a] = b; > + > + /* b has been filled, mark it as not needing to be copied */ > + pred[b] = -1; > + > + /* If a needs to be filled, it's ready for copying now */ > + if (pred[a] != -1) > + ready[++ready_idx] = a; > + } > + int b = to_do[to_do_idx--]; > + if (pred[b] == -1) > + continue; > + > + /* If we got here, then we don't have any more trivial copies that we > + * can do. We have to break a cycle, so we create a new temporary > + * register for that purpose. Normally, if going out of SSA after > + * register allocation, you would want to avoid creating temporary > + * registers. However, we are going out of SSA before register > + * allocation, so we would rather not create extra register > + * dependencies for the backend to deal with. If it wants, the > + * backend can coalesce the (possibly multiple) temporaries. > + */ > + assert(num_vals < num_copies * 2); > + nir_register *reg = nir_local_reg_create(state->impl); > + reg->name = "copy_temp"; > + reg->num_array_elems = 0; > + if (values[b].is_ssa) > + reg->num_components = values[b].ssa->num_components; > + else > + reg->num_components = values[b].reg.reg->num_components; > + values[num_vals].is_ssa = false; > + values[num_vals].reg.reg = reg; > + > + emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx); > + loc[b] = num_vals; > + ready[++ready_idx] = b; > + num_vals++; > + } > + > + nir_instr_remove(&pcopy->instr); > +} > + > +/* Resolves the parallel copies in a block. Each block can have at most > + * two: One at the beginning, right after all the phi noces, and one at > + * the end (or right before the final jump if it exists). > + */ > static bool > -remove_phi_nodes(nir_block *block, void *void_state) > +resolve_parallel_copies_block(nir_block *block, void *void_state) > { > struct from_ssa_state *state = void_state; > > - nir_foreach_instr_safe(block, instr) { > - /* Phi nodes only ever come at the start of a block */ > - if (instr->type != nir_instr_type_phi) > - break; > + /* At this point, we have removed all of the phi nodes. If a parallel > + * copy existed right after the phi nodes in this block, it is now the > + * first instruction. > + */ > + nir_instr *first_instr = nir_block_first_instr(block); > + if (first_instr == NULL) > + return true; /* Empty, nothing to do. */ > > - nir_foreach_dest(instr, rewrite_ssa_dest, state); > + if (first_instr->type == nir_instr_type_parallel_copy) { > + nir_parallel_copy_instr *pcopy = > nir_instr_as_parallel_copy(first_instr); > > - nir_phi_instr *phi = nir_instr_as_phi(instr); > - foreach_list_typed(nir_phi_src, src, node, &phi->srcs) { > - assert(src->src.is_ssa); > - struct hash_entry *entry = > - _mesa_hash_table_search(state->ssa_table, > - _mesa_hash_pointer(src->src.ssa), > - src->src.ssa); > - nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx, > nir_op_imov); > - mov->dest.dest = nir_dest_copy(phi->dest, state->mem_ctx); > - if (entry) { > - nir_register *reg = (nir_register *)entry->data; > - mov->src[0].src.reg.reg = reg; > - mov->dest.write_mask = (1 << reg->num_components) - 1; > - } else { > - mov->src[0].src = nir_src_copy(src->src, state->mem_ctx); > - mov->dest.write_mask = (1 << src->src.ssa->num_components) - 1; > - } > + resolve_parallel_copy(pcopy, state); > + } > > - nir_instr *block_end = nir_block_last_instr(src->pred); > - if (block_end && block_end->type == nir_instr_type_jump) { > - /* If the last instruction in the block is a jump, we want to > - * place the moves after the jump. Otherwise, we want to place > - * them at the very end. > - */ > - exec_node_insert_node_before(&block_end->node, &mov->instr.node); > - } else { > - exec_list_push_tail(&src->pred->instr_list, &mov->instr.node); > - } > - } > + nir_instr *last_instr = nir_block_last_instr(block); > + if (last_instr == NULL) > + return true; /* Now empty, nothing to do. */ > > - exec_node_remove(&instr->node); > - ralloc_steal(state->dead_ctx, instr); > + /* If the last instruction is a jump, the parallel copy will be before > + * the jump. > + */ > + if (last_instr->type == nir_instr_type_jump) > + last_instr = nir_instr_prev(last_instr); > + > + if (last_instr && last_instr->type == nir_instr_type_parallel_copy) { > + nir_parallel_copy_instr *pcopy = > nir_instr_as_parallel_copy(last_instr); > + if (pcopy->at_end) > + resolve_parallel_copy(pcopy, state); > } > > return true; > @@ -172,15 +795,29 @@ nir_convert_from_ssa_impl(nir_function_impl *impl) > > state.mem_ctx = ralloc_parent(impl); > state.dead_ctx = ralloc_context(NULL); > - state.current_impl = impl; > + state.impl = impl; > + state.merge_node_table = _mesa_hash_table_create(NULL, > + _mesa_key_pointer_equal); > + > + nir_foreach_block(impl, isolate_phi_nodes_block, &state); > + > + nir_metadata_dirty(impl, nir_metadata_block_index | > + nir_metadata_dominance); > + nir_metadata_require(impl, nir_metadata_live_variables | > + nir_metadata_dominance); > + > + nir_foreach_block(impl, coalesce_phi_nodes_block, &state); > + nir_foreach_block(impl, agressive_coalesce_block, &state); > + > state.ssa_table = _mesa_hash_table_create(NULL, _mesa_key_pointer_equal); > + nir_foreach_block(impl, resolve_registers_block, &state); > > - nir_foreach_block(impl, remove_phi_nodes, &state); > - nir_foreach_block(impl, convert_from_ssa_block, &state); > + nir_foreach_block(impl, resolve_parallel_copies_block, &state); > > - /* Clean up dead instructions and the hash table */ > - ralloc_free(state.dead_ctx); > + /* Clean up dead instructions and the hash tables */ > _mesa_hash_table_destroy(state.ssa_table, NULL); > + _mesa_hash_table_destroy(state.merge_node_table, NULL); > + ralloc_free(state.dead_ctx); > } > > void > -- > 2.2.0 > > _______________________________________________ > mesa-dev mailing list > mesa-dev@lists.freedesktop.org > http://lists.freedesktop.org/mailman/listinfo/mesa-dev _______________________________________________ mesa-dev mailing list mesa-dev@lists.freedesktop.org http://lists.freedesktop.org/mailman/listinfo/mesa-dev