On Wed, Jan 24, 2018 at 04:15:00PM +0200, Pohjolainen, Topi wrote: > On Fri, Jan 19, 2018 at 03:47:31PM -0800, Jason Ekstrand wrote: > > This pass performs an "ambiguate" operation on a CCS-compressed surface > > by manually writing zeros into the CCS. On gen8+, ISL gives us a fairly > > detailed notion of how the CCS is laid out so this is fairly simple to > > do. On gen7, the CCS tiling is quite crazy but that isn't an issue > > because we can only do CCS on single-slice images so we can just blast > > over the entire CCS buffer if we want to. > > --- > > src/intel/blorp/blorp.h | 5 ++ > > src/intel/blorp/blorp_clear.c | 149 > > ++++++++++++++++++++++++++++++++++++++++++ > > 2 files changed, 154 insertions(+) > > > > diff --git a/src/intel/blorp/blorp.h b/src/intel/blorp/blorp.h > > index a1dd571..478a9af 100644 > > --- a/src/intel/blorp/blorp.h > > +++ b/src/intel/blorp/blorp.h > > @@ -204,6 +204,11 @@ blorp_ccs_resolve(struct blorp_batch *batch, > > enum blorp_fast_clear_op resolve_op); > > > > void > > +blorp_ccs_ambiguate(struct blorp_batch *batch, > > + struct blorp_surf *surf, > > + uint32_t level, uint32_t layer); > > + > > +void > > blorp_mcs_partial_resolve(struct blorp_batch *batch, > > struct blorp_surf *surf, > > enum isl_format format, > > diff --git a/src/intel/blorp/blorp_clear.c b/src/intel/blorp/blorp_clear.c > > index 8e7bc9f..fa2abd9 100644 > > --- a/src/intel/blorp/blorp_clear.c > > +++ b/src/intel/blorp/blorp_clear.c > > @@ -881,3 +881,152 @@ blorp_mcs_partial_resolve(struct blorp_batch *batch, > > > > batch->blorp->exec(batch, ¶ms); > > } > > + > > +/** Clear a CCS to the "uncompressed" state > > + * > > + * This pass is the CCS equivalent of a "HiZ resolve". It sets the CCS > > values > > + * for a given layer/level of a surface to 0x0 which is the "uncompressed" > > + * state which tells the sampler to go look at the main surface. > > + */ > > +void > > +blorp_ccs_ambiguate(struct blorp_batch *batch, > > + struct blorp_surf *surf, > > + uint32_t level, uint32_t layer) > > +{ > > + struct blorp_params params; > > + blorp_params_init(¶ms); > > + > > + assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 7); > > + > > + const struct isl_format_layout *aux_fmtl = > > + isl_format_get_layout(surf->aux_surf->format); > > + assert(aux_fmtl->txc == ISL_TXC_CCS); > > + > > + params.dst = (struct brw_blorp_surface_info) { > > + .enabled = true, > > + .addr = surf->aux_addr, > > + .view = { > > + .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT, > > + .format = ISL_FORMAT_R32G32B32A32_UINT, > > + .base_level = 0, > > + .base_array_layer = 0, > > + .levels = 1, > > + .array_len = 1, > > + .swizzle = ISL_SWIZZLE_IDENTITY, > > + }, > > + }; > > + > > + uint32_t z = 0; > > + if (surf->surf->dim == ISL_SURF_DIM_3D) { > > + z = layer; > > + layer = 0; > > + } > > + > > + uint32_t offset_B, x_offset_el, y_offset_el; > > + isl_surf_get_image_offset_el(surf->aux_surf, level, layer, z, > > + &x_offset_el, &y_offset_el); > > + isl_tiling_get_intratile_offset_el(surf->aux_surf->tiling, > > aux_fmtl->bpb, > > + surf->aux_surf->row_pitch, > > + x_offset_el, y_offset_el, > > + &offset_B, &x_offset_el, > > &y_offset_el); > > + params.dst.addr.offset += offset_B; > > + > > + const uint32_t width_px = minify(surf->surf->logical_level0_px.width, > > level); > > + const uint32_t height_px = minify(surf->surf->logical_level0_px.height, > > level); > > + const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw); > > + const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh); > > + > > + struct isl_tile_info ccs_tile_info; > > + isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info); > > + > > + /* We're going to map it as a regular RGBA32_UINT surface. We need to > > + * downscale a good deal. We start by computing the area on the CCS to > > + * clear in units of Y-tiled cache lines. > > + */ > > + uint32_t x_offset_y_cl, y_offset_y_cl, width_y_cl, height_y_cl; > > + if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) { > > + /* From the Sky Lake PRM Vol. 12 in the section on planes: > > + * > > + * "The Color Control Surface (CCS) contains the compression > > status > > + * of the cache-line pairs. The compression state of the > > cache-line > > + * pair is specified by 2 bits in the CCS. Each CCS cache-line > > + * represents an area on the main surface of 16x16 sets of 128 > > byte > > + * Y-tiled cache-line-pairs. CCS is always Y tiled." > > + * > > + * Each 2-bit surface element in the CCS corresponds to a single > > + * cache-line pair in the main surface. This means that 16x16 el > > block > > + * in the CCS maps to a Y-tiled cache line. Fortunately, CCS layouts > > + * are calculated with a very large alignment so we can round up to a > > + * whole cache line without worrying about overdraw. > > + */ > > + > > + /* On Broadwell and above, a CCS tile is the same as a Y tile when > > + * viewed at the cache-line granularity. Fortunately, the horizontal > > + * and vertical alignment requirements of the CCS are such that we > > can > > + * align to an entire cache line without worrying about crossing over > > + * from one LOD to another. > > + */ > > + const uint32_t scale_x = ccs_tile_info.logical_extent_el.w / 8; > > + const uint32_t scale_y = ccs_tile_info.logical_extent_el.h / 8; > > These are now CCS tile dimensions in number of bytes, right? > > > + assert(surf->aux_surf->image_alignment_el.w % scale_x == 0); > > + assert(surf->aux_surf->image_alignment_el.h % scale_y == 0); > > + > > + assert(x_offset_el % scale_x == 0 && y_offset_el % scale_y == 0); > > + x_offset_y_cl = x_offset_el / scale_x; > > + y_offset_y_cl = y_offset_el / scale_y; > > + width_y_cl = DIV_ROUND_UP(width_el, scale_x); > > + height_y_cl = DIV_ROUND_UP(height_el, scale_y); > > This talks about cache lines but I'm reading that these *_cl are actually > numbers in CCS tiles. What am I missing/misunderstanding? > > > + } else { > > + /* On gen7, the CCS tiling is not so nice. However, there we are > > + * guaranteed that we only have a single level and slice so we don't > > + * have to worry about it and can just align to a whole tile. > > + */ > > + assert(x_offset_el == 0 && y_offset_el == 0); > > + const uint32_t width_tl = > > + DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w); > > + const uint32_t height_tl = > > + DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h); > > + x_offset_y_cl = 0; > > + y_offset_y_cl = 0; > > + width_y_cl = width_tl * 8; > > + height_y_cl = height_tl * 8; > > I am probably badly off in the weeds, and just need to ask. Here I'm thinking > that width_tl, for example, is something in number of bits and width_tl > becomes width in CCS tiles. > > > + } > > + > > + /* We're going to use a RGBA32 format so as to write data as quickly as > > + * possible. A y-tiled cache line will then be 1x4 px. > > + */ > > + const uint32_t x_offset_rgba_px = x_offset_y_cl; > > + const uint32_t y_offset_rgba_px = y_offset_y_cl * 4; > > + const uint32_t width_rgba_px = width_y_cl; > > + const uint32_t height_rgba_px = height_y_cl * 4; > > And my confusion continues here. Numbers denoted as *_cl represent something > four times as small as pixels. I'd thought one would need to divide the number > instead of multiplying it. One is about to represent the same amount with > larger units (pixels).
Right, this bit here is my bad. For some reason I treated RGBA32 as taking 256 bytes (I have no idea why). So this part makes perfect sense. _______________________________________________ mesa-dev mailing list mesa-dev@lists.freedesktop.org https://lists.freedesktop.org/mailman/listinfo/mesa-dev