Loading attached doc makes lyx crash Program received signal SIGABRT, Aborted. 0x4027cae1 in __kill () from /lib/i686/libc.so.6 Current language: auto; currently c (gdb) bt #0 0x4027cae1 in __kill () from /lib/i686/libc.so.6 #1 0x4027c8ba in raise (sig=6) at ../sysdeps/posix/raise.c:27 #2 0x4027e062 in abort () at ../sysdeps/generic/abort.c:88 #3 0x082cbe23 in lyx::abort () at abort.C:9 #4 0x0813fddd in Paragraph::layout (this=0x84cc3f0, new_layout=@0xbfffeaa8) at support/LAssert.h:24 #5 0x080a0adf in Buffer::parseSingleLyXformat2Token (this=0x843b3f8, lex=@0xbfffee48, par=@0xbfffec90, first_par=@0xbfffeb1c, token=@0xbfffec28, pos=@0xbfffeb20, depth=@0xbfffeb24, font=@0xbfffec38) at buffer.C:540 #6 0x0809fb35 in Buffer::readLyXformat2 (this=0x843b3f8, lex=@0xbfffee48, par=0x84cc3f0) at buffer.C:366 #7 0x080aa9c1 in Buffer::readFile (this=0x843b3f8, lex=@0xbfffee48, par=0x0) at buffer.C:1577 #8 0x080c053e in BufferList::readFile (this=0x8410680, s=@0xbfffefa8, ronly=false) at bufferlist.C:424 #9 0x080c1863 in BufferList::loadLyXFile (this=0x8410680, filename=@0xbffff268, tolastfiles=true) at bufferlist.C:533 #10 0x0810c5a5 in LyXFunc::open (this=0x843d460, fname=@0xbffff528) at lyxfunc.C:1865 #11 0x081041ea in LyXFunc::dispatch (this=0x843d460, action=LFUN_FILE_OPEN, argument=0xbffff528) at lyxfunc.C:1312 #12 0x080ffe56 in LyXFunc::verboseDispatch (this=0x843d460, ---Type <return> to continue, or q <return> to quit--- action=LFUN_FILE_OPEN, argument=@0xbffff588, show_sc=true) at /usr/include/g++-3/std/bastring.h:177 #13 0x080ffd9b in LyXFunc::verboseDispatch (this=0x843d460, ac=462, show_sc=true) at lyxfunc.C:787 #14 0x0829d1c4 in Menubar::Pimpl::MenuCallback (ob=0x8470d50, button=1) at Menubar_pimpl.C:586 #15 0x08296db5 in C_Menubar_Pimpl_MenuCallback (ob=0x8470d50, button=1) at Menubar_pimpl.C:81 #16 0x400af8bf in fl_object_qread () from /usr/X11R6/lib/libforms.so.0.88 #17 0x400bdb79 in fl_check_forms () from /usr/X11R6/lib/libforms.so.0.88 #18 0x082960e1 in GUIRunTime::runTime () at GUIRunTime.C:90 #19 0x080ed334 in LyXGUI::runTime (this=0x842ae40) at lyx_gui.C:315 #20 0x080edf23 in LyX::LyX (this=0xbffff790, argc=0xbffff7f0, argv=0xbffff854) at ../boost/boost/smart_ptr.hpp:102 #21 0x081327e1 in main (argc=1, argv=0xbffff854) at ../src/main.C:38 #22 0x4026a627 in __libc_start_main (main=0x8132684 <main>, argc=1, ubp_av=0xbffff854, init=0x804f74c <_init>, fini=0x8378490 <_fini>, rtld_fini=0x4000dcc4 <_dl_fini>, stack_end=0xbffff84c) at ../sysdeps/generic/libc-start.c:129
#LyX 1.2 created this file. For more info see http://www.lyx.org/ \lyxformat 220 \textclass foils \begin_preamble \MyLogo{} \date{} \end_preamble \language dutch \inputencoding auto \fontscheme default \graphics default \paperfontsize default \spacing single \papersize a4paper \paperpackage widemarginsa4 \use_geometry 0 \use_amsmath 1 \use_natbib 0 \use_numerical_citations 0 \paperorientation portrait \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \defskip medskip \quotes_language english \quotes_times 2 \papercolumns 1 \papersides 1 \paperpagestyle default
\layout Title H19: Onvolkomen mededinging \layout Itemize Prijzen in homogeen oligopoly \layout Itemize Product differentiatie \layout Itemize Toetreding \layout ShortFoilhead Prijzen in homogeen oligopoly \layout Standard \begin_inset Formula $\partial q_{j}/\partial q_{i}\neq 0$ \end_inset \layout Standard \begin_inset Formula \[ \pi _{i}=P(Q)\cdot q_{i}-C\] \end_inset \layout Standard \begin_inset Formula \[ \frac{\partial \pi _{i}}{\partial q_{i}}=P+q_{i}\left(\frac{\partial P}{\partial q_{i}}+\sum _{j\neq i}\frac{\partial P}{\partial q_{j}}\frac{\partial q_{j}}{\partial q_{i}}\right)-MC=0\] \end_inset \layout ShortFoilhead quasi competitief model \layout Standard producenten nemen prijzen als gegeven \layout Standard dit zorgt er voor dat producent \begin_inset Formula $i$ \end_inset produceert totdat: \begin_inset Formula \[ MC_{i}(q_{i})=P\] \end_inset \layout Standard met als gevolg dat de competitieve output bereikt wordt \layout ShortFoilhead Kartel \layout Standard een kartel optimaliseert \layout Standard \begin_inset Formula \[ \pi =P(Q)\cdot Q-\sum _{i=1}^{n}TC_{i}(q_{i})\] \end_inset \layout Standard waar \begin_inset Formula $Q=\sum _{i=1}^{n}q_{i}$ \end_inset . Eerste orde voorwaarde \begin_inset Formula \begin{eqnarray*} \frac{\partial \pi }{\partial q_{i}} & = & P+Q\frac{\partial P}{\partial q_{i}}-MC_{i}(q_{i})=0\\ & = & MR(Q)-MC_{i}(q_{i})=0 \end{eqnarray*} \end_inset \layout Standard Als een monopolie met meerdere fabrieken. Winst is maximaal. \layout Standard Kartels zijn mogelijk i) illegaal, ii) moeilijk implementeerbaar vanwege informatieproblemen, en iii) onstabiel. \layout ShortFoilhead Cournot model \layout Standard \begin_inset Formula \[ \pi _{i}=P(Q)\cdot q_{i}-TC_{i}(q_{i})\] \end_inset \layout Standard acties van andere producenten gegeven verondersteld: \begin_inset Formula $q_{i}$ \end_inset beinvloed \begin_inset Formula $q_{j}$ \end_inset \begin_inset Formula $j\neq i$ \end_inset niet: \begin_inset Formula \[ \partial q_{j}/\partial q_{i}=0\] \end_inset De 1e ordevoorwaarde is nu \begin_inset Formula \[ \frac{\partial \pi _{i}}{\partial q_{i}}=P+q_{i}\frac{\partial P}{\partial q_{i}}-MC_{i}(q_{i})\] \end_inset \layout Standard \begin_inset Formula $MR$ \end_inset is hier kleiner dan in het kartel want \begin_inset Formula $P+q_{i}P'>P+QP'$ \end_inset en als \begin_inset Formula $MC$ \end_inset stijgend is dan is de output hier groter dan in het kartel model, \layout Standard Productie is lager dan in het competitieve model want \begin_inset Formula $P+qP'<P$ \end_inset . \layout Standard Naarmate er meer producenten komen zal de term \begin_inset Formula $qP'$ \end_inset naar nul gaan en convergeert de productie naar het efficiente niveau. \layout ShortFoilhead Conjectureal variations model \layout Standard acties van andere producenten niet langer als gegeven verondersteld: \begin_inset Formula $q_{i}$ \end_inset beinvloed \begin_inset Formula $q_{j}$ \end_inset \begin_inset Formula $j\neq i$ \end_inset : \begin_inset Formula \[ \partial q_{j}/\partial q_{i}\neq 0\] \end_inset \layout Standard \begin_inset Formula \[ \pi _{i}=P(Q)\cdot q_{i}-C\] \end_inset \layout Standard \begin_inset Formula \[ \frac{\partial \pi _{i}}{\partial q_{i}}=P+q_{i}\left(\frac{\partial P}{\partial q_{i}}+\sum _{j\neq i}\frac{\partial P}{\partial q_{j}}\frac{\partial q_{j}}{\partial q_{i}}\right)-MC=0\] \end_inset \layout Standard De uitkomsten van een analyse van dit model hangt af van de aannames over \begin_inset Formula $\partial q_{j}/\partial q_{i}$ \end_inset . \layout Standard Dit soort soort strategische interactie modellen worden in het algemeen mbv speltheoretische technieken geanalyseerd. \layout ShortFoilhead Prijsleider \layout Standard \begin_inset Graphics FormatVersion 1 filename 19-1.eps display default size_type 2 scale 80 rotateOrigin center lyxsize_type 0 \end_inset \layout ShortFoilhead Differentiatie via locatie \layout Standard \begin_inset Graphics FormatVersion 1 filename 19-2.eps display default size_type 2 scale 60 rotateOrigin center lyxsize_type 0 \end_inset \layout \begin_inset Formula \[ P_{A}+cx=P_{B}+cy\] \end_inset \begin_inset Formula \[ a+b+x+y=L\] \end_inset \begin_inset Formula \begin{eqnarray*} x & = & ((P_{B}-P_{A})/c+L-a-b)/2\\ y & = & ((P_{A}-P_{B})/c+L-a-b)/2 \end{eqnarray*} \end_inset \begin_inset Formula \begin{eqnarray*} \pi _{A}=P_{A}(a+x) & en & \pi _{B}=P_{B}(b+y) \end{eqnarray*} \end_inset \begin_inset Formula \begin{eqnarray*} \frac{\partial \pi _{A}}{\partial P_{A}} & = & (a+x)-P_{A}/2c=0\\ \frac{\partial \pi _{B}}{\partial P_{B}} & = & (b+y)-P_{B}/2c=0 \end{eqnarray*} \end_inset \begin_inset Formula \begin{eqnarray*} P_{A}=c(L+(a-b)/3) & en & P_{B}=c(L-(a-b)/3) \end{eqnarray*} \end_inset \layout ShortFoilhead Toetreding \the_end