I'm attaching the offending file as text, as I cannot send attachments
at the moment (is there a reasonable way to do this from
the command line? I can't use exmh right now because rcvstore is missing
from nmh for some reason, and it loses all my mail :(

Anyway, I reported this a couple of years ago, and it was fixed.  Now
It's back. In the fourth line of the multiline equation in 1., something
has a double subscript.  It's not visible in LyX, but it makes
LaTeX choke.

I'm assumint that it is the 

 p_{i}_{i}\mu


hawk


#LyX 1.2 created this file. For more info see http://www.lyx.org/
\lyxformat 218
\textclass article
\begin_preamble
%\leftline{  Name: \rule{4.75in}{.4pt} \\[10pt]}
\end_preamble
\language english
\inputencoding latin1
\fontscheme default
\graphics default
\paperfontsize default
\spacing single 
\papersize letterpaper
\paperpackage a4
\use_geometry 1
\use_amsmath 0
\paperorientation portrait
\leftmargin 0.75in
\topmargin 1.25in
\rightmargin 0.75in
\bottommargin 0.25in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default

\layout Title

Covariance--Key
\layout Author

Prof.
 Hawkins
\layout Date

Due: February 13 MMI, 1:40 P.M.
\layout Standard

5 points.
 Your result shouls be legible.
 Turn in one for the entire group.
 Include the entire derivation, not just the answers.
\layout Enumerate


\begin_inset LatexCommand \label{eqForVar}

\end_inset 

Derive an easier formula for the variance of random variable 
\begin_inset Formula \( X \)
\end_inset 

, using 
\begin_inset Formula \( \mu _{X} \)
\end_inset 

.
\begin_deeper 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\sigma _{X}^{2} & = & E\left[ \left( X-\mu _{X}\right) ^{2}\right] \\
 & = & \sum _{i}p_{i}\left( X_{i}-\mu _{X}\right) ^{2}\\
 & = & \sum p_{i}_{i}\left( X_{i}^{2}-2X_{i}\mu _{X}+\mu ^{2}_{X}\right) \\
 & = & \sum _{i}p_{i}X_{i}^{2}-\sum _{i}p_{i}2X_{i}\mu _{X}+\sum p_{i}_{i}\mu 
^{2}_{X}\\
 & = & \sum p_{i}_{i}X_{i}^{2}-2\mu _{X}\sum p_{i}_{i}X_{i}+\mu ^{2}_{X}\sum 
_{i}p_{i}\\
 & = & \sum p_{i}_{i}X_{i}^{2}-2\mu _{X}\mu _{X}+\mu ^{2}_{X}1\\
 &  & \sum _{\iota }p_{i}X_{i}^{2}-\mu _{X}^{2}
\end{eqnarray*}

\end_inset 

 
\end_deeper 
\layout Enumerate


\begin_inset LatexCommand \label{values}

\end_inset 

Let 
\begin_inset Formula \( \mu _{X}=3 \)
\end_inset 

, 
\begin_inset Formula \( \sigma _{X}^{2}=16 \)
\end_inset 

, 
\begin_inset Formula \( \mu _{Y}=7 \)
\end_inset 

 and 
\begin_inset Formula \( \sigma _{Y}^{2}=9 \)
\end_inset 

.
 Calculate the mean and variance of the following (assuming the independence
 of 
\begin_inset Formula \( X \)
\end_inset 

 and 
\begin_inset Formula \( Y \)
\end_inset 

 :
\begin_deeper 
\layout Enumerate


\begin_inset Formula \( 3X \)
\end_inset 


\begin_deeper 
\layout Standard


\begin_inset Formula \( \mu _{3X}=3\times 3=9 \)
\end_inset 


\layout Standard


\begin_inset Formula \( \sigma _{3X}^{2}=3^{2}\times 16=144 \)
\end_inset 


\end_deeper 
\layout Enumerate


\begin_inset Formula \( 5Y \)
\end_inset 


\begin_deeper 
\layout Standard


\begin_inset Formula \( \mu _{5Y}=5\times 7=35 \)
\end_inset 


\layout Standard


\begin_inset Formula \( \sigma _{5Y}^{2}=5^{2}\times 9=225 \)
\end_inset 


\end_deeper 
\layout Enumerate


\begin_inset Formula \( X+Y \)
\end_inset 


\begin_deeper 
\layout Standard


\begin_inset Formula \( \mu _{X+Y}=\mu _{X}+\mu _{Y}=3+7=10 \)
\end_inset 

 
\newline 

\begin_inset Formula \( \sigma ^{2}_{X+Y}=\sigma _{X}^{2}+\sigma _{Y}^{2}=16+9=25 \)
\end_inset 


\end_deeper 
\layout Enumerate


\begin_inset Formula \( 3X+2Y \)
\end_inset 

 
\begin_deeper 
\layout Standard


\begin_inset Formula \( \mu _{3X+2Y}=\mu _{3X}+\mu _{2Y}=3\mu _{X}+2\mu _{Y}=3\times 
3+2\times 7=9+14=23 \)
\end_inset 

 
\newline 

\begin_inset Formula \( \sigma _{3X+2Y}^{2}=3^{2}\sigma _{X}^{2}+2^{2}\sigma 
_{Y}^{2}=9\times 16+4\times 9=180 \)
\end_inset 

 
\end_deeper 
\end_deeper 
\layout Enumerate

Calculate the covariance of 
\begin_inset Formula \( aX \)
\end_inset 

 and 
\begin_inset Formula \( bY \)
\end_inset 

, where 
\begin_inset Formula \( a \)
\end_inset 

 and 
\begin_inset Formula \( b \)
\end_inset 

 are constants.
 Your answer shouold be in terms of 
\begin_inset Formula \( \sigma _{X} \)
\end_inset 

, 
\begin_inset Formula \( \sigma _{Y} \)
\end_inset 

 , 
\begin_inset Formula \( \mu _{X} \)
\end_inset 

, 
\begin_inset Formula \( \mu _{Y} \)
\end_inset 

 
\begin_inset Formula \( \sigma _{XY} \)
\end_inset 


\begin_deeper 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\sigma ^{2}_{aX+bY} & \equiv  & E\left[ \left( \left\{ aX+bY\right\} -\mu 
_{aX+bY}\right) ^{2}\right] \\
 & = & E\left[ \left( \left\{ aX+bY\right\} -\mu _{aX}-\mu _{by}\right) ^{2}\right] \\
 & = & E\left[ \left( \left\{ aX-a\mu _{X})\right\} +\left\{ bY-b\mu _{y}\right\} 
\right) ^{2}\right] \\
 & = & E\left[ \left( a\left\{ X-\mu _{X})\right\} +b\left\{ Y-\mu _{y}\right\} 
\right) ^{2}\right] 
\end{eqnarray*}

\end_inset 

 Then let 
\begin_inset Formula \begin{eqnarray*}
A & \equiv  & a\left\{ X-\mu _{X}\right\} \\
B & = & b\left\{ Y-\mu _{Y}\right\} 
\end{eqnarray*}

\end_inset 

 continuing, 
\begin_inset Formula \begin{eqnarray*}
\sigma _{aX+bY}^{2} & = & E\left[ \left( A+B\right) ^{2}\right] \\
 & = & E\left[ A^{2}+2AB+B^{2}\right] \\
 & = & E\left[ A^{2}\right] +E\left[ 2AB\right] +E\left[ B^{2}\right] \\
 & = & E\left[ a^{2}\left( X-\mu _{X}\right) ^{2}\right] +2abE\left[ \left( X-\mu 
_{x}\right) \left( Y-\mu _{y}\right) \right] +E\left[ b^{2}\left( Y-\mu _{y}\right) 
^{2}\right] \\
 & = & a^{2}\sigma _{X}^{2}+2ab\sigma _{XY}+b^{2}\mu _{Y}^{2}
\end{eqnarray*}

\end_inset 


\end_deeper 
\layout Enumerate

For the values in (
\begin_inset LatexCommand \ref{values}

\end_inset 

), and the additional information that 
\begin_inset Formula \( \sigma _{XY}=1 \)
\end_inset 

 calculate 
\begin_deeper 
\layout Enumerate


\begin_inset Formula \( 3X+2Y \)
\end_inset 


\begin_deeper 
\layout Standard


\begin_inset Formula \( \mu _{3X+2Y}=3\mu _{X}+2\mu _{Y}=3\times 3+2\times 7=23 \)
\end_inset 

 (unchanged)
\layout Standard


\begin_inset Formula \( \sigma _{3X+2Y}^{2}=3^{2}\sigma _{X}^{2}+2\times 3\times 
2\times \sigma _{XY}+2^{2}\sigma _{Y}^{2}=9\times 16+12+4\times 9=192 \)
\end_inset 


\end_deeper 
\end_deeper 
\layout Subsection*

Bonus
\layout Standard

Can you come up with a formula similar to the one in (
\begin_inset LatexCommand \ref{eqForVar}

\end_inset 

) for covariance? If so, what is it? If not, why not?
\the_end

Reply via email to