Sorry, I have sent to you a backup instead of the emergency file :-(
--
![]() ![]() Prof. Murat Yildizoglu |
#LyX 2.1 created this file. For more info see http://www.lyx.org/ \lyxformat 474 \begin_document \begin_header \textclass article \use_default_options true \begin_modules multicol \end_modules \maintain_unincluded_children false \language english \language_package default \inputencoding auto \fontencoding global \font_roman default \font_sans default \font_typewriter default \font_math auto \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 \font_tt_scale 100 \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry true \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine natbib \cite_engine_type authoryear \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \index Index \shortcut idx \color #008000 \end_index \leftmargin 2cm \topmargin 2cm \rightmargin 2cm \bottommargin 2cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \quotes_language english \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header
\begin_body \begin_layout Title Structure and components of the model \end_layout \begin_layout Section Households \end_layout \begin_layout Standard Consume the final good and supply labour, which can be skilled or unskilled. \end_layout \begin_layout Section Capital goods production and market \begin_inset CommandInset label LatexCommand label name "sec:Capital-goods-production" \end_inset \end_layout \begin_layout Standard At the end of the period, the firm computes its cash-flow \begin_inset Formula \[ CF_{t}=\Pi_{t}+\left(1+i^{D}\right)D_{t-1}-\left(1+i^{C}\right)C_{t-1} \] \end_inset \end_layout \begin_layout Standard and computes the budget necessary for financing the labour and invest for the next period, and the resulting credit demand \begin_inset Formula \[ C_{t}^{d}=max\left\{ w_{t+1}N_{t+1}^{d}+p_{K,t+1}^{e}I_{t+1}^{d}-CF_{t},0\right\} \] \end_inset \end_layout \begin_layout Section Final good production and market \end_layout \begin_layout Standard Production using intermediate goods and unskilled labour. \end_layout \begin_layout Standard No innovation in this sector, but different vintage of intermediate goods with increasing productivity. \end_layout \begin_layout Section Banking \end_layout \begin_layout Section R&D and innovations \end_layout \begin_layout Standard Only K-firms do R&D and innovations \begin_inset Formula \[ R_{l}=n_{R,l}N_{l}^{S} \] \end_inset \end_layout \begin_layout Standard Sharing between radical and incremental innovation/imitation orientated R&D using the proportion \begin_inset Formula $v$ \end_inset for the radical R&D: \begin_inset Formula \[ R^{r}=vR_{l} \] \end_inset \end_layout \begin_layout Standard and incremental R&D is \begin_inset Formula \[ R^{i}=(1-v)R_{l} \] \end_inset \end_layout \begin_layout Subsection Innovations \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash noindent \end_layout \end_inset \series bold Incremental innovations \end_layout \begin_layout Standard Number of incremental innovative draws are given by a Poisson law given by the parameters \begin_inset Formula $\psi^{inc}R^{inc}$ \end_inset , where \begin_inset Formula $\psi^{inc}$ \end_inset is the productivity of the incremental R&D expenditure: \end_layout \begin_layout Standard \begin_inset Formula \[ n_{\tau}^{inc}\rightsquigarrow max\left\{ 0,\mathcal{P}\left(\psi^{r}R^{r}\right)-\Omega_{\tau}^{inc}\right\} \] \end_inset where \begin_inset Formula $d\Omega_{\tau}^{inc}/d\tau$ \end_inset >0. \begin_inset Formula \[ \Omega_{\tau}^{inc}=\psi^{inc}v(0)R^{inc}(0)-1+\varpi^{inc}\tau \] \end_inset In the case of an incremental innovation, the new production technology of the firm is drawn from a multinomial normal distribution: \begin_inset Formula \[ P_{K}^{K}\rightsquigarrow N\left(P_{K,\tau},\sigma_{K,\tau}\right),P_{\tau}^{K}\rightsquigarrow N\left(P_{L,\tau},\sigma_{K,\tau}\right) \] \end_inset \end_layout \begin_layout Standard \begin_inset Formula $\tau$ \end_inset : a trajectory, firms can change trajectory by doing enough radical R&D. Only the technology yielding the highest expected average profit of of the potential customers is adopted (unit profit computed using average values of \begin_inset Formula $p,w,P_{L}^{K},P_{K}^{K}$ \end_inset and its price for the capital good): \begin_inset Formula \begin{equation} \pi_{l}=\left(\bar{p}-\frac{\bar{w}}{P_{L,l}^{K}}\right)P_{K,l}^{K}-p_{l}^{K}/\theta\label{eq:profit-rate-technique} \end{equation} \end_inset \end_layout \begin_layout Standard with only the first term being relevant when comparing different machines: \begin_inset Formula $\left(p_{l}^{K}/m\right)$ \end_inset is the same for all technologies. Consequently, the machine with the highest value of the first term \begin_inset Formula \[ P_{K,l}^{K}\left(1-\frac{\bar{w}}{\bar{p}}\frac{1}{P_{L,l}^{K}}\right) \] \end_inset \end_layout \begin_layout Standard will be adopted as the new product (machine) to sell. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash noindent \end_layout \end_inset \series bold Radical innovations \end_layout \begin_layout Standard In the case of the radical innovation, the firm can change the trajectory \begin_inset Formula $\tau=\left(P_{\tau}^{K},P_{\tau}^{L}\right)$ \end_inset . \begin_inset Formula $\tau$ \end_inset is increasing with the distance of the technology to the origin. \end_layout \begin_layout Standard Initially, we draw \begin_inset Formula $\varrho$ \end_inset different trajectories using \begin_inset Formula \[ P_{\tau}^{K}\rightsquigarrow U\left(P_{min}^{K},P_{max}^{K}\right),\thinspace\thinspace\thinspace P_{\tau}^{L}\rightsquigarrow U\left(P_{min}^{L},P_{max}^{L}\right) \] \end_inset \end_layout \begin_layout Standard and \begin_inset Formula \[ \sigma_{K,\tau}=25P_{\tau}^{K},\sigma_{L,\tau}=25P_{\tau}^{L} \] \end_inset \end_layout \begin_layout Standard in order to exhaust any technology \begin_inset Formula $\tau$ \end_inset in approximately 25 years in both dimensions. \end_layout \begin_layout Standard Given the current technology \begin_inset Formula $\tau_{t}$ \end_inset of the firm, the firm draws a number of radical innovation draws that follows the truncated Poisson law: \end_layout \begin_layout Standard \begin_inset Formula \[ n_{\tau}^{rad}\rightsquigarrow max\left\{ 0,\mathcal{P}\left(\psi^{rad}R^{rad}\right)-\Omega_{\tau}^{rad}\right\} \] \end_inset where \begin_inset Formula $d\Omega_{\tau}^{rad}/d\tau$ \end_inset >0. \begin_inset Formula \[ \Omega_{\tau}^{rad}=\psi^{rad}v(0)R^{rad}(0)-1+\varpi^{rad}\tau \] \end_inset \end_layout \begin_layout Standard Each of the \begin_inset Formula $n_{\tau}^{rad}$ \end_inset technologies discovered by the firm is drawn using a roulette-wheel where the proportion of each technology is decreasing with its distance to the current technology. \end_layout \begin_layout Standard The firms must now discover a technique from this new technology \begin_inset Formula $\tau'$ \end_inset : \begin_inset Formula $a^{î}$ \end_inset \end_layout \begin_layout Standard It draws a new technique \begin_inset Formula $\left(P^{K},P^{L}\right)$ \end_inset between its current technique and the technology \begin_inset Formula $\tau'$ \end_inset following a uniform distribution and draws a new technique around this point, using a normal distribution with means \begin_inset Formula $\left(P^{K},P^{L}\right)$ \end_inset and with standard deviations \begin_inset Formula $\sigma_{K,\tau'}$ \end_inset and \begin_inset Formula $\sigma_{L,\tau'}$ \end_inset . \end_layout \begin_layout Standard At the end the firm compares the \begin_inset Formula $m_{\tau}$ \end_inset new techniques discovered and chooses the technology that yields the highest profit using current economic data (average prices and wages, see \begin_inset CommandInset ref LatexCommand formatted reference "eq:profit-rate-technique" \end_inset ). \end_layout \begin_layout Subsection Imitation \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash noindent \end_layout \end_inset \series bold Incremental imitation \end_layout \begin_layout Standard Given the current technology \begin_inset Formula $\tau$ \end_inset of the firm, the firm draws a number \begin_inset Formula $m_{\tau}^{inc}$ \end_inset of imitation trials in the set of firms using the same technology. \begin_inset Formula $m_{\tau}^{inc}$ \end_inset follows the truncated Poisson law: \end_layout \begin_layout Standard \begin_inset Formula \[ m_{\tau}^{inc}\rightsquigarrow max\left\{ 0,\mathcal{P}\left(\psi^{inc}R^{inc}\right)-\varGamma_{\tau}^{inc}\right\} \] \end_inset where \begin_inset Formula $d\Gamma_{\tau}^{inc}/d\tau$ \end_inset >0. \begin_inset Formula \[ \Gamma_{\tau}^{inc}=\psi^{in}v(0)R^{inc}(0)-1+\gamma^{inc}\tau \] \end_inset \end_layout \begin_layout Standard Firm \begin_inset Formula $i$ \end_inset makes \begin_inset Formula $m^{inc}$ \end_inset draws from a roulette-wheel where the probability of being imitated for competitor \begin_inset Formula $j$ \end_inset , using the same technology as \begin_inset Formula $i$ \end_inset , is proportional to \begin_inset Formula $ms_{j}/D_{ij},$ \end_inset where \begin_inset Formula $ms$ \end_inset is the real actual market share and \begin_inset Formula $D$ \end_inset is the technological distance between \begin_inset Formula $i$ \end_inset and \begin_inset Formula $j$ \end_inset . \end_layout \begin_layout Standard It draws a new technique \begin_inset Formula $\left(P^{K},P^{L}\right)$ \end_inset between its current technique and the technique of each imitated firm following a uniform distribution. \end_layout \begin_layout Standard At the end the firm compares the \begin_inset Formula $m_{\tau}^{inc}$ \end_inset new techniques discovered through imitation, and chooses the technique that yields the highest profit using current economic data (average prices and wages, see \begin_inset CommandInset ref LatexCommand formatted reference "eq:profit-rate-technique" \end_inset ). \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash noindent \end_layout \end_inset \series bold Radical imitation \end_layout \begin_layout Standard Given the current technology \begin_inset Formula $\tau$ \end_inset of the firm, the firm draws a number \begin_inset Formula $m_{\tau}^{rad}$ \end_inset of radical imitation draws, following the truncated Poisson law: \end_layout \begin_layout Standard \begin_inset Formula \[ m_{\tau}^{rad}\rightsquigarrow max\left\{ 0,\mathcal{P}\left(\psi^{rad}R^{rad}\right)-\varGamma_{\tau}^{rad}\right\} \] \end_inset where \begin_inset Formula $d\Gamma_{\tau}^{rad}/d\tau$ \end_inset >0. \begin_inset Formula \[ \Gamma_{\tau}^{rad}=\psi^{rad}v(0)R^{rad}(0)-1+\gamma^{rad}\tau \] \end_inset Firm \begin_inset Formula $i$ \end_inset makes \begin_inset Formula $m^{rad}$ \end_inset draws from a roulette-wheel where the probability of being imitated for any competitor \begin_inset Formula $j$ \end_inset in the industry is proportional to \begin_inset Formula $ms_{j}/D_{ij},$ \end_inset where \begin_inset Formula $ms$ \end_inset is the real actual market share and \begin_inset Formula $D$ \end_inset is the technological distance between the productivities of \begin_inset Formula $i$ \end_inset and \begin_inset Formula $j$ \end_inset . \end_layout \begin_layout Standard It draws a new technique \begin_inset Formula $\left(P^{K},P^{L}\right)$ \end_inset between its current technique and the technique of each imitated firm following a uniform distribution and draws a new technique around this point, using a normal distribution with means \begin_inset Formula $\left(P^{K},P^{L}\right)$ \end_inset and with standard deviations \begin_inset Formula $\sigma_{K,\tau'}$ \end_inset and \begin_inset Formula $\sigma_{L,\tau'}$ \end_inset , where \begin_inset Formula $\tau'$ \end_inset is the technology of the imitated firm. \end_layout \begin_layout Standard At the end the firm compares the \begin_inset Formula $m_{\tau}^{rad}$ \end_inset new techniques discovered through imitation, and chooses the technique and the technology \begin_inset Formula $\tau'$ \end_inset that yields the highest profit using current economic data (average prices and wages, see \begin_inset CommandInset ref LatexCommand formatted reference "eq:profit-rate-technique" \end_inset ). \end_layout \begin_layout Standard (Possibility of taking into account public research as way to guide firms' voyage through the paradigm space). \end_layout \begin_layout Section Adaptive behavior and expectations \end_layout \begin_layout Subsection Firms behavior \end_layout \begin_layout Standard Nominal wage is based on the desired growth rate of the wage given by \begin_inset Formula \[ g_{w}=max\left\{ 0,g_{N^{d}}-u^{S}\right\} ^{\phi_{1}}\left(1+g_{\Pi}-\pi\right)^{\phi_{2}}\left(1+\pi\right)^{\phi_{3}} \] \end_inset which gives \begin_inset Formula $w_{t}=(1+g_{w})w_{t-1}$ \end_inset . \end_layout \begin_layout Standard Setting the the number of researchers \begin_inset Formula \[ g_{R}=\rho_{1}log\left(\frac{\bar{P_{L}}}{P_{L}}\right)+\rho_{2}max\left\{ 0,g_{\bar{P_{L}}}-g_{P_{L}}\right\} \] \end_inset which gives \begin_inset Formula $R_{t}=(1+g_{R})R_{t-1}$ \end_inset . Where \begin_inset Formula $\bar{P_{L}}$ \end_inset is the weighted average. \end_layout \begin_layout Standard The share of radical R&D depends on the relative productivities of the firm and the relative diffusion of its technology: \begin_inset Formula \[ \nu_{t}=\nu_{t-1}+\zeta_{1}log\left(\frac{\bar{P_{L}}}{P_{L}}\right)+\zeta_{2}log\left(\frac{\bar{P_{K}}}{P_{K}}\right)+\zeta_{3}ms_{\tau_{j}} \] \end_inset where \begin_inset Formula $ms_{\tau_{j}}$ \end_inset is the share of firms using firm j's technology in the population.(Check!) \end_layout \begin_layout Standard Markup rate of the firm is based \end_layout \begin_layout Standard \begin_inset Formula $Q^{d}$ \end_inset ... \end_layout \begin_layout Subsection Households behavior \end_layout \begin_layout Subsection Bank's behavior \end_layout \begin_layout Subsection Government's behavior \end_layout \begin_layout Standard \begin_inset Newpage clearpage \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash small \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Flex Multiple Columns status open \begin_layout Plain Layout \begin_inset Tabular