Sorry,
I have sent to you a backup instead of the emergency file :-(

11 avril 2014 11:27
Hi,

I am testing the RC1. I am working on a simple document, but Lyx seems to crash randomly, and to cause a panic in my processors.
I have been able to observe this crash once after having launched LyX from the terminal, but there was not any informative message either.
One specificity maybe : the document on which I am working is in a Dropbox folder, but nobody else is modifying it when I am working on it.

How could I help you to locate the source of the problem?

Best regards,

Murat

--
Université de Bordeaux CNRS

Prof. Murat Yildizoglu

GREThA (UMR CNRS 5113)
UNIVERSITE DE BORDEAUX
GREThA (UMR CNRS 5113)
MURAT YILDIZOGLU
16 AVENUE LEON DUGUIT
CS 50057
33608 PESSAC CEDEX
FRANCE

Bureau : E-331

yildizoglu.info

#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\begin_modules
multicol
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type authoryear
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header

\begin_body

\begin_layout Title
Structure and components of the model
\end_layout

\begin_layout Section
Households
\end_layout

\begin_layout Standard
Consume the final good and supply labour, which can be skilled or unskilled.
\end_layout

\begin_layout Section
Capital goods production and market
\begin_inset CommandInset label
LatexCommand label
name "sec:Capital-goods-production"

\end_inset


\end_layout

\begin_layout Standard
At the end of the period, the firm computes its cash-flow 
\begin_inset Formula 
\[
CF_{t}=\Pi_{t}+\left(1+i^{D}\right)D_{t-1}-\left(1+i^{C}\right)C_{t-1}
\]

\end_inset


\end_layout

\begin_layout Standard
and computes the budget necessary for financing the labour and invest for
 the next period, and the resulting credit demand
\begin_inset Formula 
\[
C_{t}^{d}=max\left\{ 
w_{t+1}N_{t+1}^{d}+p_{K,t+1}^{e}I_{t+1}^{d}-CF_{t},0\right\} 
\]

\end_inset


\end_layout

\begin_layout Section
Final good production and market
\end_layout

\begin_layout Standard
Production using intermediate goods and unskilled labour.
 
\end_layout

\begin_layout Standard
No innovation in this sector, but different vintage of intermediate goods
 with increasing productivity.
\end_layout

\begin_layout Section
Banking
\end_layout

\begin_layout Section
R&D and innovations
\end_layout

\begin_layout Standard
Only K-firms do R&D and innovations 
\begin_inset Formula 
\[
R_{l}=n_{R,l}N_{l}^{S}
\]

\end_inset


\end_layout

\begin_layout Standard
Sharing between radical and incremental innovation/imitation orientated
 R&D using the proportion 
\begin_inset Formula $v$
\end_inset

 for the radical R&D:
\begin_inset Formula 
\[
R^{r}=vR_{l}
\]

\end_inset


\end_layout

\begin_layout Standard
and incremental R&D is
\begin_inset Formula 
\[
R^{i}=(1-v)R_{l}
\]

\end_inset


\end_layout

\begin_layout Subsection
Innovations
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
noindent 
\end_layout

\end_inset


\series bold
Incremental innovations
\end_layout

\begin_layout Standard
Number of incremental innovative draws are given by a Poisson law given
 by the parameters 
\begin_inset Formula $\psi^{inc}R^{inc}$
\end_inset

, where 
\begin_inset Formula $\psi^{inc}$
\end_inset

 is the productivity of the incremental R&D expenditure:
\end_layout

\begin_layout Standard
\begin_inset Formula 
\[
n_{\tau}^{inc}\rightsquigarrow max\left\{ 
0,\mathcal{P}\left(\psi^{r}R^{r}\right)-\Omega_{\tau}^{inc}\right\} 
\]

\end_inset

where 
\begin_inset Formula $d\Omega_{\tau}^{inc}/d\tau$
\end_inset

>0.
\begin_inset Formula 
\[
\Omega_{\tau}^{inc}=\psi^{inc}v(0)R^{inc}(0)-1+\varpi^{inc}\tau
\]

\end_inset

In the case of an incremental innovation, the new production technology
 of the firm is drawn from a multinomial normal distribution:
\begin_inset Formula 
\[
P_{K}^{K}\rightsquigarrow 
N\left(P_{K,\tau},\sigma_{K,\tau}\right),P_{\tau}^{K}\rightsquigarrow 
N\left(P_{L,\tau},\sigma_{K,\tau}\right)
\]

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\tau$
\end_inset

: a trajectory, firms can change trajectory by doing enough radical R&D.
 Only the technology yielding the highest expected average profit of of
 the potential customers is adopted (unit profit computed using average
 values of 
\begin_inset Formula $p,w,P_{L}^{K},P_{K}^{K}$
\end_inset

 and its price for the capital good):
\begin_inset Formula 
\begin{equation}
\pi_{l}=\left(\bar{p}-\frac{\bar{w}}{P_{L,l}^{K}}\right)P_{K,l}^{K}-p_{l}^{K}/\theta\label{eq:profit-rate-technique}
\end{equation}

\end_inset


\end_layout

\begin_layout Standard
with only the first term being relevant when comparing different machines:
 
\begin_inset Formula $\left(p_{l}^{K}/m\right)$
\end_inset

 is the same for all technologies.
 Consequently, the machine with the highest value of the first term
\begin_inset Formula 
\[
P_{K,l}^{K}\left(1-\frac{\bar{w}}{\bar{p}}\frac{1}{P_{L,l}^{K}}\right)
\]

\end_inset


\end_layout

\begin_layout Standard
will be adopted as the new product (machine) to sell.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
noindent 
\end_layout

\end_inset


\series bold
Radical innovations
\end_layout

\begin_layout Standard
In the case of the radical innovation, the firm can change the trajectory
 
\begin_inset Formula $\tau=\left(P_{\tau}^{K},P_{\tau}^{L}\right)$
\end_inset

.
 
\begin_inset Formula $\tau$
\end_inset

 is increasing with the distance of the technology to the origin.
\end_layout

\begin_layout Standard
Initially, we draw 
\begin_inset Formula $\varrho$
\end_inset

 different trajectories using
\begin_inset Formula 
\[
P_{\tau}^{K}\rightsquigarrow 
U\left(P_{min}^{K},P_{max}^{K}\right),\thinspace\thinspace\thinspace 
P_{\tau}^{L}\rightsquigarrow U\left(P_{min}^{L},P_{max}^{L}\right)
\]

\end_inset


\end_layout

\begin_layout Standard
and
\begin_inset Formula 
\[
\sigma_{K,\tau}=25P_{\tau}^{K},\sigma_{L,\tau}=25P_{\tau}^{L}
\]

\end_inset


\end_layout

\begin_layout Standard
in order to exhaust any technology 
\begin_inset Formula $\tau$
\end_inset

 in approximately 25 years in both dimensions.
\end_layout

\begin_layout Standard
Given the current technology 
\begin_inset Formula $\tau_{t}$
\end_inset

 of the firm, the firm draws a number of radical innovation draws that follows
 the truncated Poisson law:
\end_layout

\begin_layout Standard
\begin_inset Formula 
\[
n_{\tau}^{rad}\rightsquigarrow max\left\{ 
0,\mathcal{P}\left(\psi^{rad}R^{rad}\right)-\Omega_{\tau}^{rad}\right\} 
\]

\end_inset

where 
\begin_inset Formula $d\Omega_{\tau}^{rad}/d\tau$
\end_inset

>0.
\begin_inset Formula 
\[
\Omega_{\tau}^{rad}=\psi^{rad}v(0)R^{rad}(0)-1+\varpi^{rad}\tau
\]

\end_inset


\end_layout

\begin_layout Standard
Each of the 
\begin_inset Formula $n_{\tau}^{rad}$
\end_inset

 technologies discovered by the firm is drawn using a roulette-wheel where
 the proportion of each technology is decreasing with its distance to the
 current technology.
\end_layout

\begin_layout Standard
The firms must now discover a technique from this new technology 
\begin_inset Formula $\tau'$
\end_inset

:
\begin_inset Formula $a^{î}$
\end_inset


\end_layout

\begin_layout Standard
It draws a new technique 
\begin_inset Formula $\left(P^{K},P^{L}\right)$
\end_inset

 between its current technique and the technology 
\begin_inset Formula $\tau'$
\end_inset

 following a uniform distribution and draws a new technique around this
 point, using a normal distribution with means
\begin_inset Formula $\left(P^{K},P^{L}\right)$
\end_inset

 and with standard deviations 
\begin_inset Formula $\sigma_{K,\tau'}$
\end_inset

 and 
\begin_inset Formula $\sigma_{L,\tau'}$
\end_inset

.
\end_layout

\begin_layout Standard
At the end the firm compares the 
\begin_inset Formula $m_{\tau}$
\end_inset

 new techniques discovered and chooses the technology that yields the highest
 profit using current economic data (average prices and wages, see 
\begin_inset CommandInset ref
LatexCommand formatted
reference "eq:profit-rate-technique"

\end_inset

).
\end_layout

\begin_layout Subsection
Imitation
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
noindent 
\end_layout

\end_inset


\series bold
Incremental imitation
\end_layout

\begin_layout Standard
Given the current technology 
\begin_inset Formula $\tau$
\end_inset

 of the firm, the firm draws a number 
\begin_inset Formula $m_{\tau}^{inc}$
\end_inset

 of imitation trials in the set of firms using the same technology.
 
\begin_inset Formula $m_{\tau}^{inc}$
\end_inset

 follows the truncated Poisson law:
\end_layout

\begin_layout Standard
\begin_inset Formula 
\[
m_{\tau}^{inc}\rightsquigarrow max\left\{ 
0,\mathcal{P}\left(\psi^{inc}R^{inc}\right)-\varGamma_{\tau}^{inc}\right\} 
\]

\end_inset

where 
\begin_inset Formula $d\Gamma_{\tau}^{inc}/d\tau$
\end_inset

>0.
\begin_inset Formula 
\[
\Gamma_{\tau}^{inc}=\psi^{in}v(0)R^{inc}(0)-1+\gamma^{inc}\tau
\]

\end_inset


\end_layout

\begin_layout Standard
Firm 
\begin_inset Formula $i$
\end_inset

 makes 
\begin_inset Formula $m^{inc}$
\end_inset

 draws from a roulette-wheel where the probability of being imitated for
 competitor 
\begin_inset Formula $j$
\end_inset

, using the same technology as 
\begin_inset Formula $i$
\end_inset

, is proportional to 
\begin_inset Formula $ms_{j}/D_{ij},$
\end_inset

where 
\begin_inset Formula $ms$
\end_inset

 is the real actual market share and 
\begin_inset Formula $D$
\end_inset

 is the technological distance between 
\begin_inset Formula $i$
\end_inset

 and 
\begin_inset Formula $j$
\end_inset

.
\end_layout

\begin_layout Standard
It draws a new technique 
\begin_inset Formula $\left(P^{K},P^{L}\right)$
\end_inset

 between its current technique and the technique of each imitated firm following
 a uniform distribution.
\end_layout

\begin_layout Standard
At the end the firm compares the 
\begin_inset Formula $m_{\tau}^{inc}$
\end_inset

 new techniques discovered through imitation, and chooses the technique
 that yields the highest profit using current economic data (average prices
 and wages, see 
\begin_inset CommandInset ref
LatexCommand formatted
reference "eq:profit-rate-technique"

\end_inset

).
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
noindent 
\end_layout

\end_inset


\series bold
Radical imitation
\end_layout

\begin_layout Standard
Given the current technology 
\begin_inset Formula $\tau$
\end_inset

 of the firm, the firm draws a number 
\begin_inset Formula $m_{\tau}^{rad}$
\end_inset

 of radical imitation draws, following the truncated Poisson law:
\end_layout

\begin_layout Standard
\begin_inset Formula 
\[
m_{\tau}^{rad}\rightsquigarrow max\left\{ 
0,\mathcal{P}\left(\psi^{rad}R^{rad}\right)-\varGamma_{\tau}^{rad}\right\} 
\]

\end_inset

where 
\begin_inset Formula $d\Gamma_{\tau}^{rad}/d\tau$
\end_inset

>0.
\begin_inset Formula 
\[
\Gamma_{\tau}^{rad}=\psi^{rad}v(0)R^{rad}(0)-1+\gamma^{rad}\tau
\]

\end_inset

Firm 
\begin_inset Formula $i$
\end_inset

 makes 
\begin_inset Formula $m^{rad}$
\end_inset

 draws from a roulette-wheel where the probability of being imitated for
 any competitor 
\begin_inset Formula $j$
\end_inset

 in the industry is proportional to 
\begin_inset Formula $ms_{j}/D_{ij},$
\end_inset

where 
\begin_inset Formula $ms$
\end_inset

 is the real actual market share and 
\begin_inset Formula $D$
\end_inset

 is the technological distance between the productivities of 
\begin_inset Formula $i$
\end_inset

 and 
\begin_inset Formula $j$
\end_inset

.
\end_layout

\begin_layout Standard
It draws a new technique 
\begin_inset Formula $\left(P^{K},P^{L}\right)$
\end_inset

 between its current technique and the technique of each imitated firm following
 a uniform distribution and draws a new technique around this point, using
 a normal distribution with means 
\begin_inset Formula $\left(P^{K},P^{L}\right)$
\end_inset

 and with standard deviations 
\begin_inset Formula $\sigma_{K,\tau'}$
\end_inset

 and 
\begin_inset Formula $\sigma_{L,\tau'}$
\end_inset

, where 
\begin_inset Formula $\tau'$
\end_inset

 is the technology of the imitated firm.
\end_layout

\begin_layout Standard
At the end the firm compares the 
\begin_inset Formula $m_{\tau}^{rad}$
\end_inset

 new techniques discovered through imitation, and chooses the technique
 and the technology 
\begin_inset Formula $\tau'$
\end_inset

 that yields the highest profit using current economic data (average prices
 and wages, see 
\begin_inset CommandInset ref
LatexCommand formatted
reference "eq:profit-rate-technique"

\end_inset

).
\end_layout

\begin_layout Standard
(Possibility of taking into account public research as way to guide firms'
 voyage through the paradigm space).
\end_layout

\begin_layout Section
Adaptive behavior and expectations
\end_layout

\begin_layout Subsection
Firms behavior
\end_layout

\begin_layout Standard
Nominal wage is based on the desired growth rate of the wage given by
\begin_inset Formula 
\[
g_{w}=max\left\{ 0,g_{N^{d}}-u^{S}\right\} 
^{\phi_{1}}\left(1+g_{\Pi}-\pi\right)^{\phi_{2}}\left(1+\pi\right)^{\phi_{3}}
\]

\end_inset

which gives 
\begin_inset Formula $w_{t}=(1+g_{w})w_{t-1}$
\end_inset

.
\end_layout

\begin_layout Standard
Setting the the number of researchers 
\begin_inset Formula 
\[
g_{R}=\rho_{1}log\left(\frac{\bar{P_{L}}}{P_{L}}\right)+\rho_{2}max\left\{ 
0,g_{\bar{P_{L}}}-g_{P_{L}}\right\} 
\]

\end_inset

which gives 
\begin_inset Formula $R_{t}=(1+g_{R})R_{t-1}$
\end_inset

.
 Where 
\begin_inset Formula $\bar{P_{L}}$
\end_inset

 is the weighted average.
\end_layout

\begin_layout Standard
The share of radical R&D depends on the relative productivities of the firm
 and the relative diffusion of its technology:
\begin_inset Formula 
\[
\nu_{t}=\nu_{t-1}+\zeta_{1}log\left(\frac{\bar{P_{L}}}{P_{L}}\right)+\zeta_{2}log\left(\frac{\bar{P_{K}}}{P_{K}}\right)+\zeta_{3}ms_{\tau_{j}}
\]

\end_inset

where 
\begin_inset Formula $ms_{\tau_{j}}$
\end_inset

 is the share of firms using firm j's technology in the population.(Check!)
\end_layout

\begin_layout Standard
Markup rate of the firm is based 
\end_layout

\begin_layout Standard
\begin_inset Formula $Q^{d}$
\end_inset

...
\end_layout

\begin_layout Subsection
Households behavior
\end_layout

\begin_layout Subsection
Bank's behavior
\end_layout

\begin_layout Subsection
Government's behavior
\end_layout

\begin_layout Standard
\begin_inset Newpage clearpage
\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
small 
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Flex Multiple Columns
status open

\begin_layout Plain Layout
\begin_inset Tabular

Reply via email to