Ola Valéria,

Muito bacana, vou dar uma olhada, e passo a ele. Vai ficar muito
satisfeito.

Abraços,.
Walter

Em dom., 1 de ago. de 2021 04:19, Valeria de Paiva <
valeria.depa...@gmail.com> escreveu:

> Pois e' Walter, a minha tese de doutorado fala justamente da Interpretacao
> Dialectica, faz uma versao categorica e usa a variante de J. Diller e Nahm
> pra mostrar como voltar pra logica intuicionista.
>
> A tese esta' em https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-213.pdf,
> a parte sobre Dialectica e Diller-Nahm num artigo em
> http://www.cs.bham.ac.uk/~vdp/publications/dial87.pdf.
>
> abracos,
> Valeria
>
> On Sat, Jul 31, 2021 at 8:28 AM Walter Carnielli <walte...@unicamp.br>
> wrote:
>
>>  Colegas:
>>
>> Gostaria de  divulgar aqui um livro talvez  pouco conhecido, mas que
>> traz uma excelente  visão  sobre a interpretação funcional da
>> aritmética, análise e teoria dos conjuntos. O  livro revisita a famosa
>> interpretação  dialética de Gödel da aritmética de Heyting e sua
>> generalização para tipos finitos, e expõe muito bem  este temas,
>> incluindo  a interpretação de Diller-Nahm  na aritmética de Heyting e
>> Peano em tipos finitos e outros temas clássicos.
>>
>> Justus Diller  foi meu "Gastgeber" (anfitrião) no tempo que passei em
>> Münster como bolsista da  Humboldt Stiftung, é um excelente lógico,
>> matemático e  filósofo da matemática e da lógica (embora  talvez ele
>> nem pretenda isso...).  Foi também visitante no CLE Unicamp.
>>
>> Aprendi muito com ele. Recomendo  realmente este  livro.
>>
>> Abs,
>>
>> Walter
>>
>> [Inglês abaixo, c/c Diller]
>> ===================
>> Dear Colleagues:
>>
>> I would like to share here a book that is perhaps little known, but
>> which provides an excellent insight into functional interpretation of
>> arithmetic, analysis and set theory. The book revisits the famous
>> Gödel's   dialectical interpretation of Heyting arithmetic and its
>> generalization to finite types, and exposes these very well, including
>> the  Diller-Nahm's interpretation of Heyting and Peano arithmetic on
>> finite types, and other classical topics.
>>
>> Justus Diller  was my "Gastgeber" (host) during my time in Münster on
>> a Humboldt Stiftung scholarship, is an excellent logician,
>> mathematician and philosopher of mathematics and logic (although
>> perhaps he doesn't even intend to...).    He was also a visitor at CLE
>> Unicamp.
>>
>> I learned a lot from him. I really recommend this book.
>> Best,
>> Walter
>>   ==================================
>> "Functional Interpretations: From the Dialectica Interpretation to
>> Functional Interpretations of Analysis and Set Theory "
>>
>> Justus Diller (Univ of Münster, Germany)
>> World  Scientific Pub, 2019
>>
>>
>> https://www.worldofbooks.com/en-au/books/justus-diller-univ-of-munster/functional-interpretations-from-the-dialectica-interpretation-to-functional-inte/9789814551397
>>
>> This book gives a detailed treatment of functional interpretations of
>> arithmetic, analysis, and set theory. The subject goes back to
>> Goedel's Dialectica interpretation of Heyting arithmetic which
>> replaces nested quantification by higher type operations and thus
>> reduces the consistency problem for arithmetic to the problem of
>> computability of primitive recursive functionals of finite types.
>> Regular functional interpretations, in particular the Dialectica
>> interpretation and its generalization to finite types, the Diller-Nahm
>> interpretation, are studied on Heyting as well as Peano arithmetic in
>> finite types and extended to functional interpretations of
>> constructive as well as classical systems of analysis and set theory.
>> Kreisel's modified realization and Troelstra's hybrids of it are
>> presented as interpretations of Heyting arithmetic and extended to
>> constructive set theory, both in finite types. They serve as
>> background for the construction of hybrids of the Diller-Nahm
>> interpretation of Heyting arithmetic and constructive set theory,
>> again in finite types. All these functional interpretations yield
>> relative consistency results and closure under relevant rules of the
>> theories in question as well as axiomatic characterizations of the
>> functional translations.
>>
>> Table of Contents
>>
>> Arithmetic: Primitive Recursive Functionals; - (Diller - Nahm)
>> Interpretation of Heyting Arithmetic in Finite Types; The Dialectica
>> Interpretation and Equality Functionals; Simultaneous Recursions in
>> Linear Types; Computability, Consistency, Continuity; Modified
>> Realization and its Hybrids; Hybrids of the -Interpretation;
>> N-Interpretations; Interpretations of Classical Arithmetic;
>> Extensionality and Majorizability; Analysis: Bar Recursive
>> Functionals; - and Dialectica Interpretation of Bar Induction by Bar
>> Recursion; Functional Interpretations of Classical Analysis;
>> Computability of Bar Recursive Functionals; Set Theory: Constructive
>> Set Functionals; Kripke - Platek Set Theory and Its Functional
>> Interpretations; Constructive Set Theory and Its -Interpretation;
>> Modified Realizations of Constructive Set Theory; The Q-Hybrid of the
>> -Interpretation of Constructive Set Theory in Finite Types;
>> Majorizability of Constructive Set Functionals.
>>
>> ===========================
>> Walter Carnielli, Professor
>> Centre for Logic, Epistemology and the History of Science and
>> Department of Philosophy
>> University of Campinas –UNICAMP
>> 13083-859 Campinas -SP, Brazil
>> Phone: (+55) (19) 3521-6517
>> Institutional e-mail: walter.carnie...@cle.unicamp.br
>> Website: http://www.cle.unicamp.br/prof/carnielli
>>
>> --
>> Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L"
>> dos Grupos do Google.
>> Para cancelar inscrição nesse grupo e parar de receber e-mails dele,
>> envie um e-mail para logica-l+unsubscr...@dimap.ufrn.br.
>> Para ver esta discussão na web, acesse
>> https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAOrCsLcH_gynoLchVEaTjiCzFNsorDcOVGwMJerKXw_f1A1nNQ%40mail.gmail.com
>> .
>>
>

-- 
Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos 
Grupos do Google.
Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um 
e-mail para logica-l+unsubscr...@dimap.ufrn.br.
Para ver esta discussão na web, acesse 
https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAOrCsLda7D%3DpmTw0Ga-2HL0S7mJ25is29Zs%3Dbms2VBuOTX-E_g%40mail.gmail.com.

Responder a