Pois e' Walter, a minha tese de doutorado fala justamente da Interpretacao
Dialectica, faz uma versao categorica e usa a variante de J. Diller e Nahm
pra mostrar como voltar pra logica intuicionista.

A tese esta' em https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-213.pdf, a
parte sobre Dialectica e Diller-Nahm num artigo em
http://www.cs.bham.ac.uk/~vdp/publications/dial87.pdf.

abracos,
Valeria

On Sat, Jul 31, 2021 at 8:28 AM Walter Carnielli <walte...@unicamp.br>
wrote:

>  Colegas:
>
> Gostaria de  divulgar aqui um livro talvez  pouco conhecido, mas que
> traz uma excelente  visão  sobre a interpretação funcional da
> aritmética, análise e teoria dos conjuntos. O  livro revisita a famosa
> interpretação  dialética de Gödel da aritmética de Heyting e sua
> generalização para tipos finitos, e expõe muito bem  este temas,
> incluindo  a interpretação de Diller-Nahm  na aritmética de Heyting e
> Peano em tipos finitos e outros temas clássicos.
>
> Justus Diller  foi meu "Gastgeber" (anfitrião) no tempo que passei em
> Münster como bolsista da  Humboldt Stiftung, é um excelente lógico,
> matemático e  filósofo da matemática e da lógica (embora  talvez ele
> nem pretenda isso...).  Foi também visitante no CLE Unicamp.
>
> Aprendi muito com ele. Recomendo  realmente este  livro.
>
> Abs,
>
> Walter
>
> [Inglês abaixo, c/c Diller]
> ===================
> Dear Colleagues:
>
> I would like to share here a book that is perhaps little known, but
> which provides an excellent insight into functional interpretation of
> arithmetic, analysis and set theory. The book revisits the famous
> Gödel's   dialectical interpretation of Heyting arithmetic and its
> generalization to finite types, and exposes these very well, including
> the  Diller-Nahm's interpretation of Heyting and Peano arithmetic on
> finite types, and other classical topics.
>
> Justus Diller  was my "Gastgeber" (host) during my time in Münster on
> a Humboldt Stiftung scholarship, is an excellent logician,
> mathematician and philosopher of mathematics and logic (although
> perhaps he doesn't even intend to...).    He was also a visitor at CLE
> Unicamp.
>
> I learned a lot from him. I really recommend this book.
> Best,
> Walter
>   ==================================
> "Functional Interpretations: From the Dialectica Interpretation to
> Functional Interpretations of Analysis and Set Theory "
>
> Justus Diller (Univ of Münster, Germany)
> World  Scientific Pub, 2019
>
>
> https://www.worldofbooks.com/en-au/books/justus-diller-univ-of-munster/functional-interpretations-from-the-dialectica-interpretation-to-functional-inte/9789814551397
>
> This book gives a detailed treatment of functional interpretations of
> arithmetic, analysis, and set theory. The subject goes back to
> Goedel's Dialectica interpretation of Heyting arithmetic which
> replaces nested quantification by higher type operations and thus
> reduces the consistency problem for arithmetic to the problem of
> computability of primitive recursive functionals of finite types.
> Regular functional interpretations, in particular the Dialectica
> interpretation and its generalization to finite types, the Diller-Nahm
> interpretation, are studied on Heyting as well as Peano arithmetic in
> finite types and extended to functional interpretations of
> constructive as well as classical systems of analysis and set theory.
> Kreisel's modified realization and Troelstra's hybrids of it are
> presented as interpretations of Heyting arithmetic and extended to
> constructive set theory, both in finite types. They serve as
> background for the construction of hybrids of the Diller-Nahm
> interpretation of Heyting arithmetic and constructive set theory,
> again in finite types. All these functional interpretations yield
> relative consistency results and closure under relevant rules of the
> theories in question as well as axiomatic characterizations of the
> functional translations.
>
> Table of Contents
>
> Arithmetic: Primitive Recursive Functionals; - (Diller - Nahm)
> Interpretation of Heyting Arithmetic in Finite Types; The Dialectica
> Interpretation and Equality Functionals; Simultaneous Recursions in
> Linear Types; Computability, Consistency, Continuity; Modified
> Realization and its Hybrids; Hybrids of the -Interpretation;
> N-Interpretations; Interpretations of Classical Arithmetic;
> Extensionality and Majorizability; Analysis: Bar Recursive
> Functionals; - and Dialectica Interpretation of Bar Induction by Bar
> Recursion; Functional Interpretations of Classical Analysis;
> Computability of Bar Recursive Functionals; Set Theory: Constructive
> Set Functionals; Kripke - Platek Set Theory and Its Functional
> Interpretations; Constructive Set Theory and Its -Interpretation;
> Modified Realizations of Constructive Set Theory; The Q-Hybrid of the
> -Interpretation of Constructive Set Theory in Finite Types;
> Majorizability of Constructive Set Functionals.
>
> ===========================
> Walter Carnielli, Professor
> Centre for Logic, Epistemology and the History of Science and
> Department of Philosophy
> University of Campinas –UNICAMP
> 13083-859 Campinas -SP, Brazil
> Phone: (+55) (19) 3521-6517
> Institutional e-mail: walter.carnie...@cle.unicamp.br
> Website: http://www.cle.unicamp.br/prof/carnielli
>
> --
> Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L"
> dos Grupos do Google.
> Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie
> um e-mail para logica-l+unsubscr...@dimap.ufrn.br.
> Para ver esta discussão na web, acesse
> https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAOrCsLcH_gynoLchVEaTjiCzFNsorDcOVGwMJerKXw_f1A1nNQ%40mail.gmail.com
> .
>

-- 
Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos 
Grupos do Google.
Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um 
e-mail para logica-l+unsubscr...@dimap.ufrn.br.
Para ver esta discussão na web, acesse 
https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAESt%3DXv_F5c8KLPQeB-vUE%3D0UVXcCv5mv1SePq-%2BpzVwYXG%2BKw%40mail.gmail.com.

Responder a