Author: Chao Chen Date: 2024-09-23T09:03:53-05:00 New Revision: 20f77775cd2516c1a0ef12d5f8a625b31b2448d5
URL: https://github.com/llvm/llvm-project/commit/20f77775cd2516c1a0ef12d5f8a625b31b2448d5 DIFF: https://github.com/llvm/llvm-project/commit/20f77775cd2516c1a0ef12d5f8a625b31b2448d5.diff LOG: Revert "[MLIR][XeGPU] Updates XeGPU TensorDescAttr and Refine Gather/Scatter …" This reverts commit 21627236363d629f6a5b820f45a6071371e4b8db. Added: Modified: mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp mlir/test/Dialect/XeGPU/XeGPUOps.mlir mlir/test/Dialect/XeGPU/invalid.mlir Removed: ################################################################################ diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td index 26eec0d4f2082a..f3ca09a6a68ea8 100644 --- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td +++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td @@ -19,18 +19,12 @@ class XeGPUAttr<string name, string attrMnemonic, list<Trait> traits = [], let mnemonic = attrMnemonic; } -class XeGPU_TensorDescAttr<string name, string attrMnemonic, list<Trait> traits = [], - string baseCppClass = "::mlir::Attribute"> - : XeGPUAttr<name, attrMnemonic, traits, baseCppClass> { - let assemblyFormat = "`<` struct(params) `>`"; -} - -def XeGPU_BlockTensorDescAttr: XeGPU_TensorDescAttr<"BlockTensorDesc", "block_tdesc_attr"> { +def XeGPU_TensorDescAttr: XeGPUAttr<"TensorDesc", "tdesc_attr"> { let summary = [{a composite attribute for `TensorDescType`}]; - let description = [{`BlockTensorDesc` (or `block_tdesc_attr`) is a composite + let description = [{`TensorDescAttr` (or `tdesc_attr`) is a composite attribute defined for `TensorDescType` for describing following properties of a `TensorDesc`. - 1. `memory_space`: It describes where the data block described by the + 1. `memory_scope`: It describes where the data block described by the TensorDesc is located, `Global` device memory or `Shared` local memory. It is default to `Global`. 2. `array_length`: It describes how many horizontally consecutive blocks @@ -39,63 +33,43 @@ def XeGPU_BlockTensorDescAttr: XeGPU_TensorDescAttr<"BlockTensorDesc", "block_td 8x32. Its default value is 1. 3. `boundary_check`: It is used to indicates the hardware whether to do out-of-boundary check. The default value is true. + 4. `scattered`: It is used to diff erenciate TensorDescs created from + `create_nd_tdesc` vs from `create_tdesc`. }]; let parameters = (ins - OptionalParameter<"MemorySpaceAttr">: $memory_space, + OptionalParameter<"MemoryScopeAttr">: $memory_scope, OptionalParameter<"IntegerAttr", "1">: $array_length, - OptionalParameter<"BoolAttr", "true">: $boundary_check + OptionalParameter<"BoolAttr", "true">: $boundary_check, + OptionalParameter<"BoolAttr", "false">: $scattered ); let builders = [ AttrBuilder<(ins - CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space, + CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope, CArg<"int", "1">:$array_length, - CArg<"bool", "true">: $boundary_check + CArg<"bool", "true">: $boundary_check, + CArg<"bool", "false">: $scattered )> ]; + let assemblyFormat = "`<` struct(params) `>`"; } -def XeGPU_ScatterTensorDescAttr: XeGPU_TensorDescAttr<"ScatterTensorDesc", "scatter_tdesc_attr"> { - let summary = [{a composite attribute for `TensorDescType`}]; - let description = [{`ScatterTensorDesc` (or `scatter_tdesc_attr`) is a composite - attribute defined for `TensorDescType` for describing following - properties of a `TensorDesc`. - 1. `memory_space`: It describes where the data block described by the - TensorDesc is located, `Global` device memory or `Shared` local memory. - It is default to `Global`. - 2. `chunk_size`: indicates number of continious elements accessed for each - offset, default is 1. It is used with `scattered` attr only. - }]; - - let parameters = (ins - OptionalParameter<"MemorySpaceAttr">: $memory_space, - OptionalParameter<"IntegerAttr", "1">: $chunk_size - ); - - let builders = [ - AttrBuilder<(ins - CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space, - CArg<"int", "1">: $chunk_size - )> - ]; - } - //===----------------------------------------------------------------------===// // XeGPU Memory Scope Enums. //===----------------------------------------------------------------------===// -def XeGPU_MemorySpaceGlobal: I32EnumAttrCase<"Global", 0, "global">; -def XeGPU_MemorySpaceShared: I32EnumAttrCase<"SLM", 3, "slm">; -def XeGPU_MemorySpace: I32EnumAttr<"MemorySpace", +def XeGPU_MemoryScopeGlobal: I32EnumAttrCase<"Global", 0, "global">; +def XeGPU_MemoryScopeShared: I32EnumAttrCase<"SLM", 1, "slm">; +def XeGPU_MemoryScope: I32EnumAttr<"MemoryScope", "The address space of the memory the tensor descritor is created for", - [XeGPU_MemorySpaceGlobal, XeGPU_MemorySpaceShared]> { + [XeGPU_MemoryScopeGlobal, XeGPU_MemoryScopeShared]> { let genSpecializedAttr = 0; let cppNamespace = "::mlir::xegpu"; } -def XeGPU_MemorySpaceAttr: - EnumAttr<XeGPU_Dialect, XeGPU_MemorySpace, "memory_space"> { +def XeGPU_MemoryScopeAttr: + EnumAttr<XeGPU_Dialect, XeGPU_MemoryScope, "memory_scope"> { let summary = [{Describe the location of data described by a `TensorDesc`: Global device memory (`Global`) or Shared local memory (`SLM`).}]; let assemblyFormat = "$value"; @@ -142,4 +116,4 @@ def XeGPU_FenceScopeAttr: let assemblyFormat = "$value"; } -#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD +#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD \ No newline at end of file diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td index e24a056de2caf3..c32c7541c39791 100644 --- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td +++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td @@ -218,23 +218,6 @@ def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, ViewLikeOpInterface static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 1; } mlir::Value getViewSource() { return getSource(); } - - unsigned getSourceMemorySpace() { - auto srcTy = getSourceType(); - if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) { - auto attr = memrefTy.getMemorySpace(); - if (attr) { - if (auto intAttr = llvm::dyn_cast<mlir::IntegerAttr>(attr)) { - return static_cast<unsigned>(intAttr.getInt()); - } - if (auto memSpaceAttr = llvm::dyn_cast<MemorySpaceAttr>(attr)) - return static_cast<unsigned>(memSpaceAttr.getValue()); - } - } - // take global as default memory scope. - return static_cast<unsigned>(MemorySpace::Global); - } - }]; } @@ -428,10 +411,8 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> { is fixed to the hardware supportted subgroup size, e.g., 16 on PVC, implying each element in the array corresponds to a work-item (SIMT lane) in the subgroup. - - The first dimension of the result TensorDesc corresponds to work-items, so it should - match the dimension of offsets. It may also has a second dimension corresponding to - the chunk_size if the chunk size is larger than 1. + * chunk_size: [optional attribute] indicates number of continious + elements accessed for each offset, default is 1. Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64] ```mlir @@ -443,22 +424,29 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> { It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71] ```mlir %0 = memref.alloc() : memref<1024xf32> - %1 = xegpu.create_tdesc %0[0, 16, 32, 64] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8> + %1 = xegpu.create_tdesc %0[0, 16, 32, 64] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32> ``` Example 3. It is similar to Example 2, but there is some overlaps among workitems. It accesses: a[0:7], a[4:11], a[8:15], a[12:19] ```mlir %0 = memref.alloc() : memref<1024xf32> - %1 = xegpu.create_tdesc %0[0, 4, 8, 12] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>> + %1 = xegpu.create_tdesc %0[0, 4, 8, 12] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32> ``` }]; let arguments = (ins XeGPU_BaseAddrType: $source, Variadic<Index>: $offsets, - DenseI64ArrayAttr: $const_offsets); + DenseI64ArrayAttr: $const_offsets, + DefaultValuedAttr<I64Attr, "1">: $chunk_size); let results = (outs XeGPU_TensorDesc:$TensorDesc); + let builders = [ + OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "Value": $source, + "llvm::ArrayRef<OpFoldResult>": $offsets, + CArg<"uint32_t", "1"> : $chunk_size)>, + ]; + let assemblyFormat = [{ $source custom<DynamicIndexList>($offsets, $const_offsets) @@ -485,22 +473,6 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> { assert(idx < getNumOffsets() && "Invalid out of bound access."); return getMixedOffsets()[idx]; } - - unsigned getSourceMemorySpace() { - auto srcTy = getSource().getType(); - if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) { - auto attr = memrefTy.getMemorySpace(); - if (attr) { - if (auto intAttr = llvm::dyn_cast<mlir::IntegerAttr>(attr)) - return static_cast<unsigned>(intAttr.getInt()); - if (auto memSpaceAttr = llvm::dyn_cast<MemorySpaceAttr>(attr)) - return static_cast<unsigned>(memSpaceAttr.getValue()); - } - } - // take global as default memory scope. - return static_cast<unsigned>(MemorySpace::Global); - } - }]; let hasVerifier = 1; @@ -548,31 +520,28 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"] let description = [{ It (aka. load) load data per each work-item. The output describes the data being loaded at the subgroup level, so its size is - consistent with the number of work-items in a subgroup. When the chunk size - is larger than 2, the output vector is a 2D vector, with dim-1 correspoding - to work-items, and dim-0 corresponding to the chunk_size loaded by each work-item. - Specially, there is a transpose effect on the result (as compared to the TensorDesc) - due to the hardware implementation. Therefore, a transpose attribute is introduced - on purpose, making sure users are aware of this implicit transformation. + consistent with the number of work-items in a subgroup. When `chunk_size_per_lane` + attribute is larger than 1 in TensorDesc, the output vector will be 2D vector, + with dim-1 correspoding to the chunk size. The mask operand masks out memory access so that it is safe to pass out-of-boundary addresses/offsets as long as they are masked. It applies to slots of SIMD lanes. Example: ```mlir - %2 = xegpu.load %1, %0 {transpose, + %2 = xegpu.load %1, %0 {transpose = [1, 0], l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, l3_hint = #xegpu.cache_hint<uncached>} - : !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<memory_space=global>>, - vector<16xi1> -> vector<16xf32> + : !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered=true>>, vector<16xi1> + -> vector<16xf32> ``` }]; let arguments = (ins XeGPU_TensorDesc: $TensorDesc, XeGPU_MaskType: $mask, - OptionalAttr<UnitAttr>: $transpose, + OptionalAttr<DenseI64ArrayAttr>: $transpose, OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint, OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint, OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint); @@ -604,15 +573,11 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"] let hasVerifier = 1; } -def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "TensorDesc"]>, - AllElementTypesMatch<["value", "TensorDesc"]>]> { +def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllShapesMatch<["value", "TensorDesc"]>, + AllElementTypesMatch<["value", "TensorDesc"]>]> { let summary = "store data to scattered memory locations."; - let description = [{ It (aka. store) stores data to scattered memory locations. The value is - typically a 1D vector. But when the chunk size of the TensorDesc is larger than 1, it will be - a 2D vector instead. For the later case, dim-1 of the value correspods to the simd lanes - and the dim-0 of the value corresponds to the chunk_size stored per lane. So `store_scatter` - has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is - introduced on purpose, making sure users are aware of this implicit transformation. + let description = [{ It (aka. store) stores data to scattered memory locations. + It has similar semantic to `load_gather`. Example: ```mlir @@ -627,7 +592,6 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "T XeGPU_ValueType: $value, XeGPU_TensorDesc: $TensorDesc, XeGPU_MaskType: $mask, - OptionalAttr<UnitAttr>: $transpose, OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint, OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint, OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint); @@ -759,7 +723,7 @@ def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs", "rhs"]>] def XeGPU_AtomicRMWOp: XeGPU_Op<"atomic_rmw", [Pure, AllElementTypesMatch<["tensorDesc", "value", "result"]>, - AllShapesMatch<["tensorDesc", "value", "result"]>]> { + AllShapesMatch<["tensorDesc", "mask", "value", "result"]>]> { let summary = "Atomic ready-modify-write operation on the TensorDesc. "; let description = [{ @@ -844,7 +808,7 @@ def XeGPU_FenceOp: XeGPU_Op<"fence", []> { 2. `Fence_scope` describes the scope of fence. "Workgroup" means that the scope would be within each workgroup. "GPU" means the scope would be across workgroups within the GPU. }]; - let arguments = (ins XeGPU_MemorySpaceAttr: $memory_kind, + let arguments = (ins XeGPU_MemoryScopeAttr: $memory_kind, XeGPU_FenceScopeAttr: $fence_scope); let assemblyFormat = [{`memory_kind` `=` `` $memory_kind `,` `fence_scope` `=` `` $fence_scope attr-dict}]; let extraClassDeclaration = extraBaseClassDeclaration; diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td index 0ce1211664b5ba..9f101a71697b56 100644 --- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td +++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td @@ -48,7 +48,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", Similar to the builtin tensor, it also provides an optinal attribute to encoding the following information via the TensorDescAttr object: - * memory_space (xegpu::MemorySpace): [optional] where the data is located, + * memory_scope (xegpu::MemoryScope): [optional] where the data is located, global memory or shared memory. It is default to Global. * array_length (int): [optional] The number of contiguous blocks with size as `shape`, that will be loaded by block load at a time. It is default to 1. @@ -63,7 +63,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", element-type ::= float-type | integer-type | index-type dim-list := (static-dim-list `x`)? static-dim-list ::= decimal-literal `x` decimal-literal - attr-list = (, memory_space = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)? + attr-list = (, memory_scope = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)? ``` Examples: @@ -76,7 +76,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", xegpu.tensor_desc<8x16xf32> // A TensorDesc with 8x16 f32 elements for a memory region in shared memory space. - xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_space = slm>> + xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>> ``` }]; @@ -88,14 +88,11 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", TypeBuilderWithInferredContext<(ins "llvm::ArrayRef<int64_t>": $shape, "mlir::Type": $elementType, + CArg<"bool", "false">: $scattered, CArg<"int", "1">: $array_length, - CArg<"bool", "true">: $boundary_check, - CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)>, - TypeBuilderWithInferredContext<(ins - "llvm::ArrayRef<int64_t>": $shape, - "mlir::Type": $elementType, - CArg<"int", "1">: $chunk_size, - CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)> + CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope, + CArg<"bool", "true">: $boundary_check + )> ]; let extraClassDeclaration = [{ @@ -113,58 +110,40 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", return llvm::cast<TensorDescType>(cloneWith(getShape(), elementType)); } - BlockTensorDescAttr getEncodingAsBlockTensorDescAttr() const { - return llvm::dyn_cast_if_present<BlockTensorDescAttr>(getEncoding()); + TensorDescAttr getEncodingAsTensorDescAttr() const { + return llvm::dyn_cast_if_present<TensorDescAttr>(getEncoding()); } - ScatterTensorDescAttr getEncodingAsScatterTensorDescAttr() const { - return llvm::dyn_cast_if_present<ScatterTensorDescAttr>(getEncoding()); - } - - xegpu::MemorySpace getMemorySpace() const { - auto block_attr = getEncodingAsBlockTensorDescAttr(); - if (block_attr && block_attr.getMemorySpace()) - return block_attr.getMemorySpace().getValue(); - - auto scatter_attr = getEncodingAsScatterTensorDescAttr(); - if (scatter_attr && scatter_attr.getMemorySpace()) - return scatter_attr.getMemorySpace().getValue(); - + xegpu::MemoryScope getMemoryScope() const { + auto attr = getEncodingAsTensorDescAttr(); + if (attr && attr.getMemoryScope()) + return attr.getMemoryScope().getValue(); // return default value - return MemorySpace::Global; + return MemoryScope::Global; } int getArrayLength() { - auto attr = getEncoding(); - auto block_attr = mlir::dyn_cast_if_present<BlockTensorDescAttr>(attr); - assert((!attr || block_attr) && "invalid on non BlockTensorDescAttr."); - if (block_attr && block_attr.getArrayLength()) - return block_attr.getArrayLength().getInt(); + auto attr = getEncodingAsTensorDescAttr(); + if (attr && attr.getArrayLength()) + return attr.getArrayLength().getInt(); // return default value return 1; } bool getBoundaryCheck() { - auto attr = getEncoding(); - auto block_attr = mlir::dyn_cast_if_present<BlockTensorDescAttr>(attr); - assert((!attr || block_attr) && "invalid on non BlockTensorDescAttr."); - if (block_attr && block_attr.getBoundaryCheck()) - return block_attr.getBoundaryCheck().getValue(); + auto attr = getEncodingAsTensorDescAttr(); + if (attr && attr.getBoundaryCheck()) + return attr.getBoundaryCheck().getValue(); // return default value return true; } - bool isScattered() { - return bool(getEncodingAsScatterTensorDescAttr()); - } - - int getChunkSize() { - auto attr = getEncoding(); - auto scatter_attr = mlir::dyn_cast_if_present<ScatterTensorDescAttr>(attr); - assert((!attr || scatter_attr) && "invalid on non ScatterTensorDescAttr."); - if (scatter_attr && scatter_attr.getChunkSize()) - return scatter_attr.getChunkSize().getInt(); - return 1; + bool getScattered() { + auto attr = getEncodingAsTensorDescAttr(); + if (attr && attr.getScattered()) + return attr.getScattered().getValue(); + // return default value + return false; } }]; diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp index 1dfbaed454c193..24719fe748fe4f 100644 --- a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp +++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp @@ -30,35 +30,23 @@ void XeGPUDialect::initialize() { } //===----------------------------------------------------------------------===// -// XeGPU_BlockTensorDescAttr +// XeGPU_TensorDescAttr //===----------------------------------------------------------------------===// -BlockTensorDescAttr BlockTensorDescAttr::get(mlir::MLIRContext *context, - xegpu::MemorySpace memory_space, - int array_length, - bool boundary_check) { - auto scopeAttr = MemorySpaceAttr::get(context, memory_space); +TensorDescAttr TensorDescAttr::get(mlir::MLIRContext *context, + xegpu::MemoryScope memory_scope, + int array_length, bool boundary_check, + bool scattered) { + auto scopeAttr = MemoryScopeAttr::get(context, memory_scope); auto lengthAttr = IntegerAttr::get(IntegerType::get(context, 64), array_length); auto boundaryAttr = BoolAttr::get(context, boundary_check); - return Base::get(context, scopeAttr, lengthAttr, boundaryAttr); -} - -//===----------------------------------------------------------------------===// -// XeGPU_ScatterTensorDescAttr -//===----------------------------------------------------------------------===// -ScatterTensorDescAttr -ScatterTensorDescAttr::get(mlir::MLIRContext *context, - xegpu::MemorySpace memory_space, int chunk_size) { - auto scopeAttr = MemorySpaceAttr::get(context, memory_space); - auto chunkSizeAttr = - IntegerAttr::get(IntegerType::get(context, 64), chunk_size); - return Base::get(context, scopeAttr, chunkSizeAttr); + auto scatteredAttr = BoolAttr::get(context, scattered); + return Base::get(context, scopeAttr, lengthAttr, boundaryAttr, scatteredAttr); } //===----------------------------------------------------------------------===// // XeGPU_TensorDescType //===----------------------------------------------------------------------===// - mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) { llvm::SmallVector<int64_t> shape; mlir::Type elementType; @@ -120,20 +108,12 @@ void TensorDescType::print(::mlir::AsmPrinter &printer) const { } TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape, - mlir::Type elementType, int array_length, - bool boundary_check, - MemorySpace memory_space) { - auto context = elementType.getContext(); - auto attr = BlockTensorDescAttr::get(context, memory_space, array_length, - boundary_check); - return Base::get(context, shape, elementType, attr); -} - -TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape, - mlir::Type elementType, int chunk_size, - MemorySpace memory_space) { + mlir::Type elementType, bool scattered, + int array_length, MemoryScope memory_scope, + bool boundary_check) { auto context = elementType.getContext(); - auto attr = ScatterTensorDescAttr::get(context, memory_space, chunk_size); + auto attr = TensorDescAttr::get(context, memory_scope, array_length, + boundary_check, scattered); return Base::get(context, shape, elementType, attr); } diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp index 7f0c8b72b3c252..9c517337a3aa57 100644 --- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp +++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp @@ -124,17 +124,6 @@ LogicalResult CreateNdDescOp::verify() { bool invalidRank = false; bool invalidElemTy = false; - // Memory space of created TensorDesc should match with the source. - // Both source and TensorDesc are considered for global memory by default, - // if the memory scope attr is not specified. If source is an integer, - // it is considered as ptr to global memory. - auto srcMemorySpace = getSourceMemorySpace(); - auto tdescMemorySpace = static_cast<unsigned>(getType().getMemorySpace()); - if (srcMemorySpace != tdescMemorySpace) - return emitOpError("Memory space mismatch.") - << " Source: " << srcMemorySpace - << ", TensorDesc: " << tdescMemorySpace; - // check source type matches the rank if it is a memref. // It also should have the same ElementType as TensorDesc. auto memrefTy = dyn_cast<MemRefType>(getSourceType()); @@ -163,13 +152,9 @@ LogicalResult CreateNdDescOp::verify() { return emitOpError("TensorDesc should have the same element " "type with the source if it is a memref.\n"); - if (getType().isScattered()) + if (getType().getScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); - if (getType().getRank() == 2 && - tdescMemorySpace == static_cast<unsigned>(MemorySpace::SLM)) - return emitOpError("SLM is not supported for 2D Block TensorDesc.\n"); - return success(); } @@ -178,7 +163,7 @@ LogicalResult CreateNdDescOp::verify() { //===----------------------------------------------------------------------===// LogicalResult PrefetchNdOp::verify() { auto tdescTy = getTensorDescType(); - if (tdescTy.isScattered()) + if (tdescTy.getScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); if (!isReadHintOrNone(getL1HintAttr())) @@ -203,7 +188,7 @@ LogicalResult LoadNdOp::verify() { if (tdescTy.getRank() > 2) return emitOpError("Expecting a 1D/2D TensorDesc.\n"); - if (tdescTy.isScattered()) + if (tdescTy.getScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); if (!valueTy) @@ -243,8 +228,8 @@ LogicalResult LoadNdOp::verify() { tdescShape[axis] /= vnni_factor; tdescShape.push_back(vnni_factor); } else { - emitWarning("Invalid Packed Attr. It is ignored (available for 2D " - "TensorDesc only)."); + return emitWarning("Invalid Packed Attr. It is ignored (available for 2D " + "TensorDesc only)."); } } @@ -271,7 +256,7 @@ LogicalResult StoreNdOp::verify() { if (dstTy.getRank() > 2) return emitOpError("Expecting a 1D/2D TensorDesc.\n"); - if (dstTy.isScattered()) + if (dstTy.getScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); if (!valTy) @@ -294,7 +279,7 @@ LogicalResult StoreNdOp::verify() { //===----------------------------------------------------------------------===// LogicalResult UpdateNdOffsetOp::verify() { auto ty = getTensorDescType(); - if (ty.isScattered()) + if (ty.getScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); // number of offsets specified must match the rank of the tensor descriptor @@ -307,55 +292,28 @@ LogicalResult UpdateNdOffsetOp::verify() { //===----------------------------------------------------------------------===// // XeGPU_CreateDescOp //===----------------------------------------------------------------------===// +void CreateDescOp::build(OpBuilder &builder, OperationState &state, + TensorDescType TensorDesc, Value source, + llvm::ArrayRef<OpFoldResult> offsets, + uint32_t chunk_size) { + llvm::SmallVector<int64_t> staticOffsets; + llvm::SmallVector<Value> dynamicOffsets; + dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); + build(builder, state, TensorDesc, source, dynamicOffsets, staticOffsets, + chunk_size); +} LogicalResult CreateDescOp::verify() { auto tdescTy = getTensorDescType(); + auto chunkSize = getChunkSize(); if (getRankOf(getSource()) > 1) return emitOpError( "Expecting the source is a 1D memref or pointer (uint64_t)."); - if (!tdescTy.isScattered()) + if (!tdescTy.getScattered()) return emitOpError("Expects a scattered TensorDesc.\n"); - // Memory space of created TensorDesc should match with the source. - // Both source and TensorDesc are considered for global memory by default, - // if the memory scope attr is not specified. If source is an integer, - // it is considered as ptr to global memory. - auto srcMemorySpace = getSourceMemorySpace(); - auto tdescMemorySpace = static_cast<unsigned>(tdescTy.getMemorySpace()); - if (srcMemorySpace != tdescMemorySpace) - return emitOpError("Memory space mismatch.") - << " Source: " << srcMemorySpace - << ", TensorDesc: " << tdescMemorySpace; - - auto chunkSize = tdescTy.getChunkSize(); - - // check chunk_size - llvm::SmallVector<int64_t> supportedChunkSizes = {1, 2, 3, 4, 8, - 16, 32, 64, 128, 256}; - if (!llvm::is_contained(supportedChunkSizes, chunkSize)) - return emitOpError("Invalid chunk_size. Supported values are 1, 2, 3, 4, " - "8, 16, 32, 64, 128, or 256."); - - // check total size - auto elemBits = tdescTy.getElementType().getIntOrFloatBitWidth(); - auto bitsPerLane = elemBits * chunkSize; - if (chunkSize > 1 && bitsPerLane % 32) { - // For 8-bit and 16-bit data, the hardware only supports chunk size of 1. - // For 32-bit data, the hardware can support larger chunk size. So - // we can bitcast 8-bit/16-bit data to 32-bit data for better performance. - // But this requires the total size is 32 bit aligned to make the - // optimization work. - return emitOpError( - "access size (chunk_size * sizeof(elemTy)) should be 32-bit aligned."); - } - - auto lscConstraints = 512 * 8; // each access is upto 512 bytes. - if (elemBits * tdescTy.getNumElements() > lscConstraints) - return emitOpError("total access size (simd_lanes * chunk_size * " - "sizeof(elemTy)) is upto 512 bytes."); - SmallVector<int64_t> shape({(int64_t)getNumOffsets()}); if (chunkSize != 1) shape.push_back(chunkSize); @@ -373,7 +331,7 @@ LogicalResult CreateDescOp::verify() { //===----------------------------------------------------------------------===// LogicalResult PrefetchOp::verify() { auto tdescTy = getTensorDescType(); - if (!tdescTy.isScattered()) + if (!tdescTy.getScattered()) return emitOpError("Expects a scattered TensorDesc.\n"); if (!isReadHintOrNone(getL1HintAttr())) @@ -396,7 +354,7 @@ LogicalResult LoadGatherOp::verify() { auto maskTy = getMaskType(); auto valueTy = getValueType(); - if (!tdescTy.isScattered()) + if (!tdescTy.getScattered()) return emitOpError("Expects a scattered TensorDesc.\n"); if (!isReadHintOrNone(getL1HintAttr())) @@ -421,10 +379,12 @@ LogicalResult LoadGatherOp::verify() { if (tdescShape[0] != maskShape[0]) return emitOpError("dim-0 of the Mask and TensorDesc should be the same."); - if (tdescTy.getRank() == 2) { - if (!getTransposeAttr()) - return emitOpError("load_gather has to be transposed."); - transpose({1, 0}, tdescShape); + if (getTransposeAttr()) { + auto trans = getTranspose().value(); + if (tdescShape.size() < trans.size()) + emitWarning("Invalid transpose attr. It is ignored."); + else + transpose(trans, tdescShape); } if (valueShape != tdescShape) @@ -440,7 +400,7 @@ LogicalResult LoadGatherOp::verify() { //===----------------------------------------------------------------------===// LogicalResult StoreScatterOp::verify() { auto tdescTy = getTensorDescType(); - if (!tdescTy.isScattered()) + if (!tdescTy.getScattered()) return emitOpError("Expects a scattered TensorDesc.\n"); if (!isWriteHintOrNone(getL1HintAttr())) @@ -453,24 +413,11 @@ LogicalResult StoreScatterOp::verify() { return emitOpError("invlid l3_hint: ") << getL3HintAttr(); auto maskTy = getMaskType(); - auto valueTy = getValueType(); auto maskShape = getShapeOf(maskTy); auto tdescShape = getShapeOf(tdescTy); - auto valueShape = getShapeOf(valueTy); if (tdescShape[0] != maskShape[0]) return emitOpError("dim-0 of the Mask and TensorDesc should be the same."); - if (tdescTy.getRank() == 2) { - if (!getTransposeAttr()) - return emitOpError("load_gather has to be transposed."); - transpose({1, 0}, tdescShape); - } - - if (valueShape != tdescShape) - return emitOpError("Unexpected value shape") - << "(Expected shape: " << makeString(tdescShape) - << ", Given shape: " << makeString(valueShape) << ").\n"; - return success(); } //===----------------------------------------------------------------------===// diff --git a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir index c1126efb6046dc..35d44cf56a239b 100644 --- a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir +++ b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir @@ -24,8 +24,8 @@ gpu.func @test_create_nd_tdesc_vc_2(%src: ui64, %w : index, %h : index, %x : ind // CHECK: gpu.func @test_create_nd_tdesc_vc_3(%[[arg0:.*]]: memref<24x32xf32>) { gpu.func @test_create_nd_tdesc_vc_3(%src: memref<24x32xf32>) { - // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2 : i64> - %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2>> + // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.tdesc_attr<array_length = 2 : i64> + %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.tdesc_attr<array_length = 2>> gpu.return } @@ -36,13 +36,6 @@ gpu.func @test_create_nd_tdesc_vc_4(%src: memref<2x24x32xf32>) { gpu.return } -// CHECK: gpu.func @test_create_nd_tdesc_vc_5(%[[arg0:.*]]: memref<2x24x32xf32, 3>) { -gpu.func @test_create_nd_tdesc_vc_5(%src: memref<2x24x32xf32, 3>) { - // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr<memory_space = slm>> - %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr<memory_space = slm>> - gpu.return -} - // CHECK: gpu.func @test_prefetch_nd_vc(%[[arg0:.*]]: memref<24x32xf16>) { gpu.func @test_prefetch_nd_vc(%src: memref<24x32xf16>) { // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16> @@ -104,24 +97,17 @@ gpu.func @test_create_update_nd_tdesc_vc(%src: memref<24x32xf32>) { // CHECK: gpu.func @test_create_tdesc_vc(%[[arg0:.*]]: ui64) { gpu.func @test_create_tdesc_vc(%src: ui64) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> - gpu.return -} - -// CHECK: gpu.func @test_create_tdesc_vc_1(%[[arg0:.*]]: memref<?xf32, 3>) { -gpu.func @test_create_tdesc_vc_1(%src: memref<?xf32, 3>) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : memref<?xf32, 3> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2 : i64>> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : memref<?xf32, 3> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> gpu.return } // CHECK: gpu.func @test_prefetch_vc(%[[arg0:.*]]: ui64) { gpu.func @test_prefetch_vc(%src: ui64) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> - // CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>> - xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + // CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> gpu.return } @@ -129,12 +115,12 @@ gpu.func @test_prefetch_vc(%src: ui64) { gpu.func @test_load_gather_vc(%src: ui64) { //CHECK: %[[cst:.*]] = arith.constant dense<true> : vector<4xi1> %0 = arith.constant dense<1>: vector<4xi1> - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> - //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> - //CHECK-SAME: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>, vector<4xi1> -> vector<2x4xf32> - %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> - : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> -> vector<2x4xf32> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> + //CHECK-SAME: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1> -> vector<4x2xf32> + %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> + : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1> -> vector<4x2xf32> gpu.return } @@ -142,23 +128,23 @@ gpu.func @test_load_gather_vc(%src: ui64) { gpu.func @test_store_scatter_vc(%src: ui64) { //CHECK: %[[c0:.*]] = arith.constant dense<true> : vector<4xi1> %0 = arith.constant dense<1>: vector<4xi1> - //CHECK: %[[c1:.*]] = arith.constant dense<2.900000e+00> : vector<2x4xf32> - %1 = arith.constant dense<2.9>: vector<2x4xf32> - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>> - %2 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> - //CHECK: xegpu.store %[[c1]], %[[R0]], %[[c0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> - //CHECK-SAME: vector<2x4xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>, vector<4xi1> - xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> - : vector<2x4xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> + //CHECK: %[[c1:.*]] = arith.constant dense<2.900000e+00> : vector<4x2xf32> + %1 = arith.constant dense<2.9>: vector<4x2xf32> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + %2 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + //CHECK: xegpu.store %[[c1]], %[[R0]], %[[c0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> + //CHECK-SAME: vector<4x2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1> + xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> + : vector<4x2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1> gpu.return } // CHECK: gpu.func @test_create_update_tdesc_vc(%[[arg0:.*]]: ui64) { gpu.func @test_create_update_tdesc_vc(%src: ui64) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24]: ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> - //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>> - %2 = xegpu.update_offset %1, [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> + %2 = xegpu.update_offset %1, [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> gpu.return } @@ -179,10 +165,10 @@ gpu.func @test_dpas_vc_with_packed_b(%a : vector<8x16xf16>, %b: vector<8x16x2xf1 // CHECK: gpu.func @test_atomic_rmw(%[[arg0:.*]]: ui64, %[[arg1:.*]]: vector<16xf32>, %[[arg2:.*]]: vector<16xi1>) gpu.func @test_atomic_rmw(%src: ui64, %value : vector<16xf32>, %mask : vector<16xi1>) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>> - %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]: ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>> - //CHECK: %[[R1:.*]] = xegpu.atomic_rmw addf %[[R0]], %[[arg2]], %[[arg1]] : !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>, vector<16xi1>, vector<16xf32> -> vector<16xf32> - xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>, vector<16xi1>, vector<16xf32> -> vector<16xf32> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered = true>> + %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]: ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered = true>> + //CHECK: %[[R1:.*]] = xegpu.atomic_rmw addf %[[R0]], %[[arg2]], %[[arg1]] : !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered = true>>, vector<16xi1>, vector<16xf32> -> vector<16xf32> + xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered = true>>, vector<16xi1>, vector<16xf32> -> vector<16xf32> gpu.return } diff --git a/mlir/test/Dialect/XeGPU/invalid.mlir b/mlir/test/Dialect/XeGPU/invalid.mlir index 193dae352e3707..7ef50bb2b5fadf 100644 --- a/mlir/test/Dialect/XeGPU/invalid.mlir +++ b/mlir/test/Dialect/XeGPU/invalid.mlir @@ -15,20 +15,6 @@ func.func @test_create_nd_tdesc_vc_2(%src: memref<24x32xf32>) { return } -// ----- -func.func @test_create_nd_tdesc_vc_3(%src: memref<2x24x32xf32, 3>) { - // expected-error@+1 {{SLM is not supported for 2D Block TensorDesc}} - %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<8x16xf32, #xegpu.block_tdesc_attr<memory_space = slm>> - return -} - -// ----- -func.func @test_create_nd_tdesc_vc_4(%src: memref<2x24x32xf32, 3>) { - // expected-error@+1 {{Memory space mismatch}} - %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32> - return -} - // ----- func.func @test_prefetch_nd_vc_1(%src: memref<24x32xf16>) { %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16> @@ -40,10 +26,10 @@ func.func @test_prefetch_nd_vc_1(%src: memref<24x32xf16>) { // ----- func.func @test_prefetch_nd_vc_2(%src: memref<24xf16>) { %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7] - : memref<24xf16> -> !xegpu.tensor_desc<8xf16, #xegpu.scatter_tdesc_attr<>> + : memref<24xf16> -> !xegpu.tensor_desc<8xf16, #xegpu.tdesc_attr<scattered=true>> // expected-error@+1 {{Expects a non-scattered TensorDesc}} xegpu.prefetch_nd %1 <{l1_hint = #xegpu.cache_hint<cached>}> - : !xegpu.tensor_desc<8xf16, #xegpu.scatter_tdesc_attr<>> + : !xegpu.tensor_desc<8xf16, #xegpu.tdesc_attr<scattered=true>> return } @@ -58,11 +44,11 @@ func.func @test_load_nd_vc_1(%src: memref<8x16xf16>) { // ----- func.func @test_load_nd_vc_2(%src: memref<16xf16>) { - %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] - : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} + : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>> // expected-error@+1 {{Expects a non-scattered TensorDesc.}} %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>}> - : !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> -> vector<8x2xf16> + : !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>> -> vector<8x2xf16> return } @@ -87,28 +73,28 @@ func.func @test_store_nd_vc_1(%dst: memref<24x32xf16>) { // ----- func.func @test_store_nd_vc_2(%dst: memref<16xf16>) { %1 = arith.constant dense<1.0>: vector<8x2xf16> - %2 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] - : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + %2 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} + : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>> // expected-error@+1 {{Expects a non-scattered TensorDesc}} xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint<streaming>}> - : vector<8x2xf16>, !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + : vector<8x2xf16>, !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>> return } // ----- func.func @test_update_nd_offset_1(%dst: memref<16xf16>) { - %1 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] - : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + %1 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} + : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>> // expected-error@+1 {{Expects a non-scattered TensorDesc}} - xegpu.update_nd_offset %1, [0, 2] : !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + xegpu.update_nd_offset %1, [0, 2] : !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>> return } // ----- func.func @test_create_tdesc_vc_1(%src: ui64) { // expected-error@+1 {{Expects a scattered TensorDesc}} - %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] - : ui64 -> !xegpu.tensor_desc<8xf16> + %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} + : ui64 -> !xegpu.tensor_desc<8x2xf16> return } @@ -116,14 +102,7 @@ func.func @test_create_tdesc_vc_1(%src: ui64) { func.func @test_create_tdesc_vc_2(%src: ui64) { // expected-error@+1 {{Incorrect TensorDesc shape}} %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} - : ui64 -> !xegpu.tensor_desc<8x4xf16, #xegpu.scatter_tdesc_attr<>> - return -} - -// ----- -func.func @test_create_tdesc_vc_1(%src: memref<?xf32>) { - // expected-error@+1 {{Memory space mismatch}} - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : memref<?xf32> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>> + : ui64 -> !xegpu.tensor_desc<8x4xf16, #xegpu.tdesc_attr<scattered = true>> return } @@ -137,9 +116,9 @@ func.func @test_prefetch_vc_1(%src: memref<24x32xf16>) { // ----- func.func @test_prefetch_vc_2(%src: ui64) { - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> // expected-error@+1 {{invlid l1_hint: #xegpu.cache_hint<write_back>}} - xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<write_back>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<write_back>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> return } @@ -156,11 +135,11 @@ func.func @test_load_gather_vc_1(%src: memref<24x32xf16>) { // ----- func.func @test_load_gather_vc_2(%src: ui64) { %0 = arith.constant dense<1>: vector<4xi1> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 - -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 + -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> // expected-error@+1 {{invlid l1_hint: #xegpu.cache_hint<write_back>}} %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<write_back>}> - : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> + : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1> -> vector<4x2xf32> return } @@ -180,11 +159,11 @@ func.func @test_store_scatter_vc_1(%src: memref<24x32xf32>) { func.func @test_store_scatter_vc_2(%src: ui64) { %0 = arith.constant dense<1>: vector<4xi1> %1 = arith.constant dense<2.9>: vector<4x2xf32> - %2 = xegpu.create_tdesc %src[0, 8, 16, 24] - : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> + %2 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} + : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>> // expected-error@+1 {{invlid l1_hint: #xegpu.cache_hint<streaming>}} xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<streaming>}> : vector<4x2xf32>, - !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> + !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1> return } @@ -203,9 +182,9 @@ func.func @test_dpas_vc_2(%a : vector<8x8x2xf16>, %b: vector<8x16x2xf16>) { } // ----- -func.func @test_atomic_rmw(%src: ui64, %value : vector<16x4xf32>, %mask : vector<16xi1>) { - %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<chunk_size = 8>> - // expected-error@+1 {{failed to verify that all of {tensorDesc, value, result} have same shape}} - xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<chunk_size = 8>>, vector<16xi1>, vector<16x4xf32> -> vector<16x8xf32> - return +func.func @test_atomic_rmw(%src: ui64, %value : vector<16x8xf32>, %mask : vector<16xi1>) { + %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] {chunk_size = 8}: ui64 -> !xegpu.tensor_desc<16x8xf32, #xegpu.tdesc_attr<scattered = true>> + // expected-error@+1 {{failed to verify that all of {tensorDesc, mask, value, result} have same shape}} + xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16x8xf32, #xegpu.tdesc_attr<scattered = true>>, vector<16xi1>, vector<16x8xf32> -> vector<16x8xf32> + gpu.return } \ No newline at end of file _______________________________________________ llvm-branch-commits mailing list llvm-branch-commits@lists.llvm.org https://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-branch-commits