On Thu, 2014-11-06 at 02:45 +0100, Wolfram Sang wrote: > The new driver is around for more than 2 years now, so the old one can > go. Getting rid of it helps the removal of the legacy .attach_adapter > callback of the I2C subsystem. > > Signed-off-by: Wolfram Sang <w...@the-dreams.de>
Acked-by: Benjamin Herrenschmidt <b...@kernel.crashing.org> > --- > drivers/macintosh/Kconfig | 10 - > drivers/macintosh/Makefile | 1 - > drivers/macintosh/therm_pm72.c | 2279 > ---------------------------------------- > drivers/macintosh/therm_pm72.h | 326 ------ > 4 files changed, 2616 deletions(-) > delete mode 100644 drivers/macintosh/therm_pm72.c > delete mode 100644 drivers/macintosh/therm_pm72.h > > diff --git a/drivers/macintosh/Kconfig b/drivers/macintosh/Kconfig > index 3067d56b11a6..5844b80bd90e 100644 > --- a/drivers/macintosh/Kconfig > +++ b/drivers/macintosh/Kconfig > @@ -204,16 +204,6 @@ config THERM_ADT746X > iBook G4, and the ATI based aluminium PowerBooks, allowing slightly > better fan behaviour by default, and some manual control. > > -config THERM_PM72 > - tristate "Support for thermal management on PowerMac G5 (AGP)" > - depends on I2C && I2C_POWERMAC && PPC_PMAC64 > - default n > - help > - This driver provides thermostat and fan control for the desktop > - G5 machines. > - > - This is deprecated, use windfarm instead. > - > config WINDFARM > tristate "New PowerMac thermal control infrastructure" > depends on PPC > diff --git a/drivers/macintosh/Makefile b/drivers/macintosh/Makefile > index d2f0120bc878..383ba920085b 100644 > --- a/drivers/macintosh/Makefile > +++ b/drivers/macintosh/Makefile > @@ -25,7 +25,6 @@ obj-$(CONFIG_ADB_IOP) += adb-iop.o > obj-$(CONFIG_ADB_PMU68K) += via-pmu68k.o > obj-$(CONFIG_ADB_MACIO) += macio-adb.o > > -obj-$(CONFIG_THERM_PM72) += therm_pm72.o > obj-$(CONFIG_THERM_WINDTUNNEL) += therm_windtunnel.o > obj-$(CONFIG_THERM_ADT746X) += therm_adt746x.o > obj-$(CONFIG_WINDFARM) += windfarm_core.o > diff --git a/drivers/macintosh/therm_pm72.c b/drivers/macintosh/therm_pm72.c > deleted file mode 100644 > index 97cfc5ac9fd0..000000000000 > --- a/drivers/macintosh/therm_pm72.c > +++ /dev/null > @@ -1,2279 +0,0 @@ > -/* > - * Device driver for the thermostats & fan controller of the > - * Apple G5 "PowerMac7,2" desktop machines. > - * > - * (c) Copyright IBM Corp. 2003-2004 > - * > - * Maintained by: Benjamin Herrenschmidt > - * <b...@kernel.crashing.org> > - * > - * > - * The algorithm used is the PID control algorithm, used the same > - * way the published Darwin code does, using the same values that > - * are present in the Darwin 7.0 snapshot property lists. > - * > - * As far as the CPUs control loops are concerned, I use the > - * calibration & PID constants provided by the EEPROM, > - * I do _not_ embed any value from the property lists, as the ones > - * provided by Darwin 7.0 seem to always have an older version that > - * what I've seen on the actual computers. > - * It would be interesting to verify that though. Darwin has a > - * version code of 1.0.0d11 for all control loops it seems, while > - * so far, the machines EEPROMs contain a dataset versioned 1.0.0f > - * > - * Darwin doesn't provide source to all parts, some missing > - * bits like the AppleFCU driver or the actual scale of some > - * of the values returned by sensors had to be "guessed" some > - * way... or based on what Open Firmware does. > - * > - * I didn't yet figure out how to get the slots power consumption > - * out of the FCU, so that part has not been implemented yet and > - * the slots fan is set to a fixed 50% PWM, hoping this value is > - * safe enough ... > - * > - * Note: I have observed strange oscillations of the CPU control > - * loop on a dual G5 here. When idle, the CPU exhaust fan tend to > - * oscillates slowly (over several minutes) between the minimum > - * of 300RPMs and approx. 1000 RPMs. I don't know what is causing > - * this, it could be some incorrect constant or an error in the > - * way I ported the algorithm, or it could be just normal. I > - * don't have full understanding on the way Apple tweaked the PID > - * algorithm for the CPU control, it is definitely not a standard > - * implementation... > - * > - * TODO: - Check MPU structure version/signature > - * - Add things like /sbin/overtemp for non-critical > - * overtemp conditions so userland can take some policy > - * decisions, like slowing down CPUs > - * - Deal with fan and i2c failures in a better way > - * - Maybe do a generic PID based on params used for > - * U3 and Drives ? Definitely need to factor code a bit > - * better... also make sensor detection more robust using > - * the device-tree to probe for them > - * - Figure out how to get the slots consumption and set the > - * slots fan accordingly > - * > - * History: > - * > - * Nov. 13, 2003 : 0.5 > - * - First release > - * > - * Nov. 14, 2003 : 0.6 > - * - Read fan speed from FCU, low level fan routines now deal > - * with errors & check fan status, though higher level don't > - * do much. > - * - Move a bunch of definitions to .h file > - * > - * Nov. 18, 2003 : 0.7 > - * - Fix build on ppc64 kernel > - * - Move back statics definitions to .c file > - * - Avoid calling schedule_timeout with a negative number > - * > - * Dec. 18, 2003 : 0.8 > - * - Fix typo when reading back fan speed on 2 CPU machines > - * > - * Mar. 11, 2004 : 0.9 > - * - Rework code accessing the ADC chips, make it more robust and > - * closer to the chip spec. Also make sure it is configured properly, > - * I've seen yet unexplained cases where on startup, I would have > stale > - * values in the configuration register > - * - Switch back to use of target fan speed for PID, thus lowering > - * pressure on i2c > - * > - * Oct. 20, 2004 : 1.1 > - * - Add device-tree lookup for fan IDs, should detect liquid cooling > - * pumps when present > - * - Enable driver for PowerMac7,3 machines > - * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does > - * - Add new CPU cooling algorithm for machines with liquid cooling > - * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree > - * - Fix a signed/unsigned compare issue in some PID loops > - * > - * Mar. 10, 2005 : 1.2 > - * - Add basic support for Xserve G5 > - * - Retrieve pumps min/max from EEPROM image in device-tree (broken) > - * - Use min/max macros here or there > - * - Latest darwin updated U3H min fan speed to 20% PWM > - * > - * July. 06, 2006 : 1.3 > - * - Fix setting of RPM fans on Xserve G5 (they were going too fast) > - * - Add missing slots fan control loop for Xserve G5 > - * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We > - * still can't properly implement the control loop for these, so let's > - * reduce the noise a little bit, it appears that 40% still gives us > - * a pretty good air flow > - * - Add code to "tickle" the FCU regulary so it doesn't think that > - * we are gone while in fact, the machine just didn't need any fan > - * speed change lately > - * > - */ > - > -#include <linux/types.h> > -#include <linux/module.h> > -#include <linux/errno.h> > -#include <linux/kernel.h> > -#include <linux/delay.h> > -#include <linux/sched.h> > -#include <linux/init.h> > -#include <linux/spinlock.h> > -#include <linux/wait.h> > -#include <linux/reboot.h> > -#include <linux/kmod.h> > -#include <linux/i2c.h> > -#include <linux/kthread.h> > -#include <linux/mutex.h> > -#include <linux/of_device.h> > -#include <linux/of_platform.h> > -#include <asm/prom.h> > -#include <asm/machdep.h> > -#include <asm/io.h> > -#include <asm/sections.h> > -#include <asm/macio.h> > - > -#include "therm_pm72.h" > - > -#define VERSION "1.3" > - > -#undef DEBUG > - > -#ifdef DEBUG > -#define DBG(args...) printk(args) > -#else > -#define DBG(args...) do { } while(0) > -#endif > - > - > -/* > - * Driver statics > - */ > - > -static struct platform_device * of_dev; > -static struct i2c_adapter * u3_0; > -static struct i2c_adapter * u3_1; > -static struct i2c_adapter * k2; > -static struct i2c_client * fcu; > -static struct cpu_pid_state processor_state[2]; > -static struct basckside_pid_params backside_params; > -static struct backside_pid_state backside_state; > -static struct drives_pid_state drives_state; > -static struct dimm_pid_state dimms_state; > -static struct slots_pid_state slots_state; > -static int state; > -static int cpu_count; > -static int cpu_pid_type; > -static struct task_struct *ctrl_task; > -static struct completion ctrl_complete; > -static int critical_state; > -static int rackmac; > -static s32 dimm_output_clamp; > -static int fcu_rpm_shift; > -static int fcu_tickle_ticks; > -static DEFINE_MUTEX(driver_lock); > - > -/* > - * We have 3 types of CPU PID control. One is "split" old style control > - * for intake & exhaust fans, the other is "combined" control for both > - * CPUs that also deals with the pumps when present. To be "compatible" > - * with OS X at this point, we only use "COMBINED" on the machines that > - * are identified as having the pumps (though that identification is at > - * least dodgy). Ultimately, we could probably switch completely to this > - * algorithm provided we hack it to deal with the UP case > - */ > -#define CPU_PID_TYPE_SPLIT 0 > -#define CPU_PID_TYPE_COMBINED 1 > -#define CPU_PID_TYPE_RACKMAC 2 > - > -/* > - * This table describes all fans in the FCU. The "id" and "type" values > - * are defaults valid for all earlier machines. Newer machines will > - * eventually override the table content based on the device-tree > - */ > -struct fcu_fan_table > -{ > - char* loc; /* location code */ > - int type; /* 0 = rpm, 1 = pwm, 2 = pump */ > - int id; /* id or -1 */ > -}; > - > -#define FCU_FAN_RPM 0 > -#define FCU_FAN_PWM 1 > - > -#define FCU_FAN_ABSENT_ID -1 > - > -#define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans) > - > -struct fcu_fan_table fcu_fans[] = { > - [BACKSIDE_FAN_PWM_INDEX] = { > - .loc = "BACKSIDE,SYS CTRLR FAN", > - .type = FCU_FAN_PWM, > - .id = BACKSIDE_FAN_PWM_DEFAULT_ID, > - }, > - [DRIVES_FAN_RPM_INDEX] = { > - .loc = "DRIVE BAY", > - .type = FCU_FAN_RPM, > - .id = DRIVES_FAN_RPM_DEFAULT_ID, > - }, > - [SLOTS_FAN_PWM_INDEX] = { > - .loc = "SLOT,PCI FAN", > - .type = FCU_FAN_PWM, > - .id = SLOTS_FAN_PWM_DEFAULT_ID, > - }, > - [CPUA_INTAKE_FAN_RPM_INDEX] = { > - .loc = "CPU A INTAKE", > - .type = FCU_FAN_RPM, > - .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID, > - }, > - [CPUA_EXHAUST_FAN_RPM_INDEX] = { > - .loc = "CPU A EXHAUST", > - .type = FCU_FAN_RPM, > - .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID, > - }, > - [CPUB_INTAKE_FAN_RPM_INDEX] = { > - .loc = "CPU B INTAKE", > - .type = FCU_FAN_RPM, > - .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID, > - }, > - [CPUB_EXHAUST_FAN_RPM_INDEX] = { > - .loc = "CPU B EXHAUST", > - .type = FCU_FAN_RPM, > - .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID, > - }, > - /* pumps aren't present by default, have to be looked up in the > - * device-tree > - */ > - [CPUA_PUMP_RPM_INDEX] = { > - .loc = "CPU A PUMP", > - .type = FCU_FAN_RPM, > - .id = FCU_FAN_ABSENT_ID, > - }, > - [CPUB_PUMP_RPM_INDEX] = { > - .loc = "CPU B PUMP", > - .type = FCU_FAN_RPM, > - .id = FCU_FAN_ABSENT_ID, > - }, > - /* Xserve fans */ > - [CPU_A1_FAN_RPM_INDEX] = { > - .loc = "CPU A 1", > - .type = FCU_FAN_RPM, > - .id = FCU_FAN_ABSENT_ID, > - }, > - [CPU_A2_FAN_RPM_INDEX] = { > - .loc = "CPU A 2", > - .type = FCU_FAN_RPM, > - .id = FCU_FAN_ABSENT_ID, > - }, > - [CPU_A3_FAN_RPM_INDEX] = { > - .loc = "CPU A 3", > - .type = FCU_FAN_RPM, > - .id = FCU_FAN_ABSENT_ID, > - }, > - [CPU_B1_FAN_RPM_INDEX] = { > - .loc = "CPU B 1", > - .type = FCU_FAN_RPM, > - .id = FCU_FAN_ABSENT_ID, > - }, > - [CPU_B2_FAN_RPM_INDEX] = { > - .loc = "CPU B 2", > - .type = FCU_FAN_RPM, > - .id = FCU_FAN_ABSENT_ID, > - }, > - [CPU_B3_FAN_RPM_INDEX] = { > - .loc = "CPU B 3", > - .type = FCU_FAN_RPM, > - .id = FCU_FAN_ABSENT_ID, > - }, > -}; > - > -static struct i2c_driver therm_pm72_driver; > - > -/* > - * Utility function to create an i2c_client structure and > - * attach it to one of u3 adapters > - */ > -static struct i2c_client *attach_i2c_chip(int id, const char *name) > -{ > - struct i2c_client *clt; > - struct i2c_adapter *adap; > - struct i2c_board_info info; > - > - if (id & 0x200) > - adap = k2; > - else if (id & 0x100) > - adap = u3_1; > - else > - adap = u3_0; > - if (adap == NULL) > - return NULL; > - > - memset(&info, 0, sizeof(struct i2c_board_info)); > - info.addr = (id >> 1) & 0x7f; > - strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE); > - clt = i2c_new_device(adap, &info); > - if (!clt) { > - printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID > 0x%x\n", id); > - return NULL; > - } > - > - /* > - * Let i2c-core delete that device on driver removal. > - * This is safe because i2c-core holds the core_lock mutex for us. > - */ > - list_add_tail(&clt->detected, &therm_pm72_driver.clients); > - return clt; > -} > - > -/* > - * Here are the i2c chip access wrappers > - */ > - > -static void initialize_adc(struct cpu_pid_state *state) > -{ > - int rc; > - u8 buf[2]; > - > - /* Read ADC the configuration register and cache it. We > - * also make sure Config2 contains proper values, I've seen > - * cases where we got stale grabage in there, thus preventing > - * proper reading of conv. values > - */ > - > - /* Clear Config2 */ > - buf[0] = 5; > - buf[1] = 0; > - i2c_master_send(state->monitor, buf, 2); > - > - /* Read & cache Config1 */ > - buf[0] = 1; > - rc = i2c_master_send(state->monitor, buf, 1); > - if (rc > 0) { > - rc = i2c_master_recv(state->monitor, buf, 1); > - if (rc > 0) { > - state->adc_config = buf[0]; > - DBG("ADC config reg: %02x\n", state->adc_config); > - /* Disable shutdown mode */ > - state->adc_config &= 0xfe; > - buf[0] = 1; > - buf[1] = state->adc_config; > - rc = i2c_master_send(state->monitor, buf, 2); > - } > - } > - if (rc <= 0) > - printk(KERN_ERR "therm_pm72: Error reading ADC config" > - " register !\n"); > -} > - > -static int read_smon_adc(struct cpu_pid_state *state, int chan) > -{ > - int rc, data, tries = 0; > - u8 buf[2]; > - > - for (;;) { > - /* Set channel */ > - buf[0] = 1; > - buf[1] = (state->adc_config & 0x1f) | (chan << 5); > - rc = i2c_master_send(state->monitor, buf, 2); > - if (rc <= 0) > - goto error; > - /* Wait for conversion */ > - msleep(1); > - /* Switch to data register */ > - buf[0] = 4; > - rc = i2c_master_send(state->monitor, buf, 1); > - if (rc <= 0) > - goto error; > - /* Read result */ > - rc = i2c_master_recv(state->monitor, buf, 2); > - if (rc < 0) > - goto error; > - data = ((u16)buf[0]) << 8 | (u16)buf[1]; > - return data >> 6; > - error: > - DBG("Error reading ADC, retrying...\n"); > - if (++tries > 10) { > - printk(KERN_ERR "therm_pm72: Error reading ADC !\n"); > - return -1; > - } > - msleep(10); > - } > -} > - > -static int read_lm87_reg(struct i2c_client * chip, int reg) > -{ > - int rc, tries = 0; > - u8 buf; > - > - for (;;) { > - /* Set address */ > - buf = (u8)reg; > - rc = i2c_master_send(chip, &buf, 1); > - if (rc <= 0) > - goto error; > - rc = i2c_master_recv(chip, &buf, 1); > - if (rc <= 0) > - goto error; > - return (int)buf; > - error: > - DBG("Error reading LM87, retrying...\n"); > - if (++tries > 10) { > - printk(KERN_ERR "therm_pm72: Error reading LM87 !\n"); > - return -1; > - } > - msleep(10); > - } > -} > - > -static int fan_read_reg(int reg, unsigned char *buf, int nb) > -{ > - int tries, nr, nw; > - > - buf[0] = reg; > - tries = 0; > - for (;;) { > - nw = i2c_master_send(fcu, buf, 1); > - if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100) > - break; > - msleep(10); > - ++tries; > - } > - if (nw <= 0) { > - printk(KERN_ERR "Failure writing address to FCU: %d", nw); > - return -EIO; > - } > - tries = 0; > - for (;;) { > - nr = i2c_master_recv(fcu, buf, nb); > - if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100) > - break; > - msleep(10); > - ++tries; > - } > - if (nr <= 0) > - printk(KERN_ERR "Failure reading data from FCU: %d", nw); > - return nr; > -} > - > -static int fan_write_reg(int reg, const unsigned char *ptr, int nb) > -{ > - int tries, nw; > - unsigned char buf[16]; > - > - buf[0] = reg; > - memcpy(buf+1, ptr, nb); > - ++nb; > - tries = 0; > - for (;;) { > - nw = i2c_master_send(fcu, buf, nb); > - if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100) > - break; > - msleep(10); > - ++tries; > - } > - if (nw < 0) > - printk(KERN_ERR "Failure writing to FCU: %d", nw); > - return nw; > -} > - > -static int start_fcu(void) > -{ > - unsigned char buf = 0xff; > - int rc; > - > - rc = fan_write_reg(0xe, &buf, 1); > - if (rc < 0) > - return -EIO; > - rc = fan_write_reg(0x2e, &buf, 1); > - if (rc < 0) > - return -EIO; > - rc = fan_read_reg(0, &buf, 1); > - if (rc < 0) > - return -EIO; > - fcu_rpm_shift = (buf == 1) ? 2 : 3; > - printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n", > - fcu_rpm_shift); > - > - return 0; > -} > - > -static int set_rpm_fan(int fan_index, int rpm) > -{ > - unsigned char buf[2]; > - int rc, id, min, max; > - > - if (fcu_fans[fan_index].type != FCU_FAN_RPM) > - return -EINVAL; > - id = fcu_fans[fan_index].id; > - if (id == FCU_FAN_ABSENT_ID) > - return -EINVAL; > - > - min = 2400 >> fcu_rpm_shift; > - max = 56000 >> fcu_rpm_shift; > - > - if (rpm < min) > - rpm = min; > - else if (rpm > max) > - rpm = max; > - buf[0] = rpm >> (8 - fcu_rpm_shift); > - buf[1] = rpm << fcu_rpm_shift; > - rc = fan_write_reg(0x10 + (id * 2), buf, 2); > - if (rc < 0) > - return -EIO; > - return 0; > -} > - > -static int get_rpm_fan(int fan_index, int programmed) > -{ > - unsigned char failure; > - unsigned char active; > - unsigned char buf[2]; > - int rc, id, reg_base; > - > - if (fcu_fans[fan_index].type != FCU_FAN_RPM) > - return -EINVAL; > - id = fcu_fans[fan_index].id; > - if (id == FCU_FAN_ABSENT_ID) > - return -EINVAL; > - > - rc = fan_read_reg(0xb, &failure, 1); > - if (rc != 1) > - return -EIO; > - if ((failure & (1 << id)) != 0) > - return -EFAULT; > - rc = fan_read_reg(0xd, &active, 1); > - if (rc != 1) > - return -EIO; > - if ((active & (1 << id)) == 0) > - return -ENXIO; > - > - /* Programmed value or real current speed */ > - reg_base = programmed ? 0x10 : 0x11; > - rc = fan_read_reg(reg_base + (id * 2), buf, 2); > - if (rc != 2) > - return -EIO; > - > - return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift; > -} > - > -static int set_pwm_fan(int fan_index, int pwm) > -{ > - unsigned char buf[2]; > - int rc, id; > - > - if (fcu_fans[fan_index].type != FCU_FAN_PWM) > - return -EINVAL; > - id = fcu_fans[fan_index].id; > - if (id == FCU_FAN_ABSENT_ID) > - return -EINVAL; > - > - if (pwm < 10) > - pwm = 10; > - else if (pwm > 100) > - pwm = 100; > - pwm = (pwm * 2559) / 1000; > - buf[0] = pwm; > - rc = fan_write_reg(0x30 + (id * 2), buf, 1); > - if (rc < 0) > - return rc; > - return 0; > -} > - > -static int get_pwm_fan(int fan_index) > -{ > - unsigned char failure; > - unsigned char active; > - unsigned char buf[2]; > - int rc, id; > - > - if (fcu_fans[fan_index].type != FCU_FAN_PWM) > - return -EINVAL; > - id = fcu_fans[fan_index].id; > - if (id == FCU_FAN_ABSENT_ID) > - return -EINVAL; > - > - rc = fan_read_reg(0x2b, &failure, 1); > - if (rc != 1) > - return -EIO; > - if ((failure & (1 << id)) != 0) > - return -EFAULT; > - rc = fan_read_reg(0x2d, &active, 1); > - if (rc != 1) > - return -EIO; > - if ((active & (1 << id)) == 0) > - return -ENXIO; > - > - /* Programmed value or real current speed */ > - rc = fan_read_reg(0x30 + (id * 2), buf, 1); > - if (rc != 1) > - return -EIO; > - > - return (buf[0] * 1000) / 2559; > -} > - > -static void tickle_fcu(void) > -{ > - int pwm; > - > - pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX); > - > - DBG("FCU Tickle, slots fan is: %d\n", pwm); > - if (pwm < 0) > - pwm = 100; > - > - if (!rackmac) { > - pwm = SLOTS_FAN_DEFAULT_PWM; > - } else if (pwm < SLOTS_PID_OUTPUT_MIN) > - pwm = SLOTS_PID_OUTPUT_MIN; > - > - /* That is hopefully enough to make the FCU happy */ > - set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm); > -} > - > - > -/* > - * Utility routine to read the CPU calibration EEPROM data > - * from the device-tree > - */ > -static int read_eeprom(int cpu, struct mpu_data *out) > -{ > - struct device_node *np; > - char nodename[64]; > - const u8 *data; > - int len; > - > - /* prom.c routine for finding a node by path is a bit brain dead > - * and requires exact @xxx unit numbers. This is a bit ugly but > - * will work for these machines > - */ > - sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0); > - np = of_find_node_by_path(nodename); > - if (np == NULL) { > - printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from > device-tree\n"); > - return -ENODEV; > - } > - data = of_get_property(np, "cpuid", &len); > - if (data == NULL) { > - printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property > from device-tree\n"); > - of_node_put(np); > - return -ENODEV; > - } > - memcpy(out, data, sizeof(struct mpu_data)); > - of_node_put(np); > - > - return 0; > -} > - > -static void fetch_cpu_pumps_minmax(void) > -{ > - struct cpu_pid_state *state0 = &processor_state[0]; > - struct cpu_pid_state *state1 = &processor_state[1]; > - u16 pump_min = 0, pump_max = 0xffff; > - u16 tmp[4]; > - > - /* Try to fetch pumps min/max infos from eeprom */ > - > - memcpy(&tmp, &state0->mpu.processor_part_num, 8); > - if (tmp[0] != 0xffff && tmp[1] != 0xffff) { > - pump_min = max(pump_min, tmp[0]); > - pump_max = min(pump_max, tmp[1]); > - } > - if (tmp[2] != 0xffff && tmp[3] != 0xffff) { > - pump_min = max(pump_min, tmp[2]); > - pump_max = min(pump_max, tmp[3]); > - } > - > - /* Double check the values, this _IS_ needed as the EEPROM on > - * some dual 2.5Ghz G5s seem, at least, to have both min & max > - * same to the same value ... (grrrr) > - */ > - if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) { > - pump_min = CPU_PUMP_OUTPUT_MIN; > - pump_max = CPU_PUMP_OUTPUT_MAX; > - } > - > - state0->pump_min = state1->pump_min = pump_min; > - state0->pump_max = state1->pump_max = pump_max; > -} > - > -/* > - * Now, unfortunately, sysfs doesn't give us a nice void * we could > - * pass around to the attribute functions, so we don't really have > - * choice but implement a bunch of them... > - * > - * That sucks a bit, we take the lock because FIX32TOPRINT evaluates > - * the input twice... I accept patches :) > - */ > -#define BUILD_SHOW_FUNC_FIX(name, data) \ > -static ssize_t show_##name(struct device *dev, struct device_attribute > *attr, char *buf) \ > -{ \ > - ssize_t r; \ > - mutex_lock(&driver_lock); \ > - r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \ > - mutex_unlock(&driver_lock); \ > - return r; \ > -} > -#define BUILD_SHOW_FUNC_INT(name, data) \ > -static ssize_t show_##name(struct device *dev, struct device_attribute > *attr, char *buf) \ > -{ \ > - return sprintf(buf, "%d", data); \ > -} > - > -BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp) > -BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage) > -BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a) > -BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm) > -BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm) > - > -BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp) > -BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage) > -BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a) > -BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm) > -BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm) > - > -BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp) > -BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm) > - > -BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp) > -BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm) > - > -BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp) > -BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm) > - > -BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp) > - > -static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL); > -static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL); > -static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL); > -static > DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL); > -static > DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL); > - > -static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL); > -static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL); > -static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL); > -static > DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL); > -static > DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL); > - > -static > DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL); > -static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL); > - > -static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL); > -static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL); > - > -static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL); > -static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL); > - > -static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL); > - > -/* > - * CPUs fans control loop > - */ > - > -static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, > s32 *power) > -{ > - s32 ltemp, volts, amps; > - int index, rc = 0; > - > - /* Default (in case of error) */ > - *temp = state->cur_temp; > - *power = state->cur_power; > - > - if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) > - index = (state->index == 0) ? > - CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX; > - else > - index = (state->index == 0) ? > - CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX; > - > - /* Read current fan status */ > - rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED); > - if (rc < 0) { > - /* XXX What do we do now ? Nothing for now, keep old value, but > - * return error upstream > - */ > - DBG(" cpu %d, fan reading error !\n", state->index); > - } else { > - state->rpm = rc; > - DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm); > - } > - > - /* Get some sensor readings and scale it */ > - ltemp = read_smon_adc(state, 1); > - if (ltemp == -1) { > - /* XXX What do we do now ? */ > - state->overtemp++; > - if (rc == 0) > - rc = -EIO; > - DBG(" cpu %d, temp reading error !\n", state->index); > - } else { > - /* Fixup temperature according to diode calibration > - */ > - DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n", > - state->index, > - ltemp, state->mpu.mdiode, state->mpu.bdiode); > - *temp = ((s32)ltemp * (s32)state->mpu.mdiode + > ((s32)state->mpu.bdiode << 12)) >> 2; > - state->last_temp = *temp; > - DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp))); > - } > - > - /* > - * Read voltage & current and calculate power > - */ > - volts = read_smon_adc(state, 3); > - amps = read_smon_adc(state, 4); > - > - /* Scale voltage and current raw sensor values according to fixed scales > - * obtained in Darwin and calculate power from I and V > - */ > - volts *= ADC_CPU_VOLTAGE_SCALE; > - amps *= ADC_CPU_CURRENT_SCALE; > - *power = (((u64)volts) * ((u64)amps)) >> 16; > - state->voltage = volts; > - state->current_a = amps; > - state->last_power = *power; > - > - DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n", > - state->index, FIX32TOPRINT(state->current_a), > - FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power)); > - > - return 0; > -} > - > -static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power) > -{ > - s32 power_target, integral, derivative, proportional, adj_in_target, > sval; > - s64 integ_p, deriv_p, prop_p, sum; > - int i; > - > - /* Calculate power target value (could be done once for all) > - * and convert to a 16.16 fp number > - */ > - power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16; > - DBG(" power target: %d.%03d, error: %d.%03d\n", > - FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power)); > - > - /* Store temperature and power in history array */ > - state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; > - state->temp_history[state->cur_temp] = temp; > - state->cur_power = (state->cur_power + 1) % state->count_power; > - state->power_history[state->cur_power] = power; > - state->error_history[state->cur_power] = power_target - power; > - > - /* If first loop, fill the history table */ > - if (state->first) { > - for (i = 0; i < (state->count_power - 1); i++) { > - state->cur_power = (state->cur_power + 1) % > state->count_power; > - state->power_history[state->cur_power] = power; > - state->error_history[state->cur_power] = power_target - > power; > - } > - for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) { > - state->cur_temp = (state->cur_temp + 1) % > CPU_TEMP_HISTORY_SIZE; > - state->temp_history[state->cur_temp] = temp; > > - } > - state->first = 0; > - } > - > - /* Calculate the integral term normally based on the "power" values */ > - sum = 0; > - integral = 0; > - for (i = 0; i < state->count_power; i++) > - integral += state->error_history[i]; > - integral *= CPU_PID_INTERVAL; > - DBG(" integral: %08x\n", integral); > - > - /* Calculate the adjusted input (sense value). > - * G_r is 12.20 > - * integ is 16.16 > - * so the result is 28.36 > - * > - * input target is mpu.ttarget, input max is mpu.tmax > - */ > - integ_p = ((s64)state->mpu.pid_gr) * (s64)integral; > - DBG(" integ_p: %d\n", (int)(integ_p >> 36)); > - sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff); > - adj_in_target = (state->mpu.ttarget << 16); > - if (adj_in_target > sval) > - adj_in_target = sval; > - DBG(" adj_in_target: %d.%03d, ttarget: %d\n", > FIX32TOPRINT(adj_in_target), > - state->mpu.ttarget); > - > - /* Calculate the derivative term */ > - derivative = state->temp_history[state->cur_temp] - > - state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - > 1) > - % CPU_TEMP_HISTORY_SIZE]; > - derivative /= CPU_PID_INTERVAL; > - deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative; > - DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); > - sum += deriv_p; > - > - /* Calculate the proportional term */ > - proportional = temp - adj_in_target; > - prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional; > - DBG(" prop_p: %d\n", (int)(prop_p >> 36)); > - sum += prop_p; > - > - /* Scale sum */ > - sum >>= 36; > - > - DBG(" sum: %d\n", (int)sum); > - state->rpm += (s32)sum; > -} > - > -static void do_monitor_cpu_combined(void) > -{ > - struct cpu_pid_state *state0 = &processor_state[0]; > - struct cpu_pid_state *state1 = &processor_state[1]; > - s32 temp0, power0, temp1, power1; > - s32 temp_combi, power_combi; > - int rc, intake, pump; > - > - rc = do_read_one_cpu_values(state0, &temp0, &power0); > - if (rc < 0) { > - /* XXX What do we do now ? */ > - } > - state1->overtemp = 0; > - rc = do_read_one_cpu_values(state1, &temp1, &power1); > - if (rc < 0) { > - /* XXX What do we do now ? */ > - } > - if (state1->overtemp) > - state0->overtemp++; > - > - temp_combi = max(temp0, temp1); > - power_combi = max(power0, power1); > - > - /* Check tmax, increment overtemp if we are there. At tmax+8, we go > - * full blown immediately and try to trigger a shutdown > - */ > - if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) { > - printk(KERN_WARNING "Warning ! Temperature way above maximum > (%d) !\n", > - temp_combi >> 16); > - state0->overtemp += CPU_MAX_OVERTEMP / 4; > - } else if (temp_combi > (state0->mpu.tmax << 16)) { > - state0->overtemp++; > - printk(KERN_WARNING "Temperature %d above max %d. overtemp > %d\n", > - temp_combi >> 16, state0->mpu.tmax, state0->overtemp); > - } else { > - if (state0->overtemp) > - printk(KERN_WARNING "Temperature back down to %d\n", > - temp_combi >> 16); > - state0->overtemp = 0; > - } > - if (state0->overtemp >= CPU_MAX_OVERTEMP) > - critical_state = 1; > - if (state0->overtemp > 0) { > - state0->rpm = state0->mpu.rmaxn_exhaust_fan; > - state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan; > - pump = state0->pump_max; > - goto do_set_fans; > - } > - > - /* Do the PID */ > - do_cpu_pid(state0, temp_combi, power_combi); > - > - /* Range check */ > - state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan); > - state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan); > - > - /* Calculate intake fan speed */ > - intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16; > - intake = max(intake, (int)state0->mpu.rminn_intake_fan); > - intake = min(intake, (int)state0->mpu.rmaxn_intake_fan); > - state0->intake_rpm = intake; > - > - /* Calculate pump speed */ > - pump = (state0->rpm * state0->pump_max) / > - state0->mpu.rmaxn_exhaust_fan; > - pump = min(pump, state0->pump_max); > - pump = max(pump, state0->pump_min); > - > - do_set_fans: > - /* We copy values from state 0 to state 1 for /sysfs */ > - state1->rpm = state0->rpm; > - state1->intake_rpm = state0->intake_rpm; > - > - DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n", > - state1->index, (int)state1->rpm, intake, pump, state1->overtemp); > - > - /* We should check for errors, shouldn't we ? But then, what > - * do we do once the error occurs ? For FCU notified fan > - * failures (-EFAULT) we probably want to notify userland > - * some way... > - */ > - set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); > - set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm); > - set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); > - set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm); > - > - if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) > - set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump); > - if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) > - set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump); > -} > - > -static void do_monitor_cpu_split(struct cpu_pid_state *state) > -{ > - s32 temp, power; > - int rc, intake; > - > - /* Read current fan status */ > - rc = do_read_one_cpu_values(state, &temp, &power); > - if (rc < 0) { > - /* XXX What do we do now ? */ > - } > - > - /* Check tmax, increment overtemp if we are there. At tmax+8, we go > - * full blown immediately and try to trigger a shutdown > - */ > - if (temp >= ((state->mpu.tmax + 8) << 16)) { > - printk(KERN_WARNING "Warning ! CPU %d temperature way above > maximum" > - " (%d) !\n", > - state->index, temp >> 16); > - state->overtemp += CPU_MAX_OVERTEMP / 4; > - } else if (temp > (state->mpu.tmax << 16)) { > - state->overtemp++; > - printk(KERN_WARNING "CPU %d temperature %d above max %d. > overtemp %d\n", > - state->index, temp >> 16, state->mpu.tmax, > state->overtemp); > - } else { > - if (state->overtemp) > - printk(KERN_WARNING "CPU %d temperature back down to > %d\n", > - state->index, temp >> 16); > - state->overtemp = 0; > - } > - if (state->overtemp >= CPU_MAX_OVERTEMP) > - critical_state = 1; > - if (state->overtemp > 0) { > - state->rpm = state->mpu.rmaxn_exhaust_fan; > - state->intake_rpm = intake = state->mpu.rmaxn_intake_fan; > - goto do_set_fans; > - } > - > - /* Do the PID */ > - do_cpu_pid(state, temp, power); > - > - /* Range check */ > - state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan); > - state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan); > - > - /* Calculate intake fan */ > - intake = (state->rpm * CPU_INTAKE_SCALE) >> 16; > - intake = max(intake, (int)state->mpu.rminn_intake_fan); > - intake = min(intake, (int)state->mpu.rmaxn_intake_fan); > - state->intake_rpm = intake; > - > - do_set_fans: > - DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n", > - state->index, (int)state->rpm, intake, state->overtemp); > - > - /* We should check for errors, shouldn't we ? But then, what > - * do we do once the error occurs ? For FCU notified fan > - * failures (-EFAULT) we probably want to notify userland > - * some way... > - */ > - if (state->index == 0) { > - set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); > - set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm); > - } else { > - set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); > - set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm); > - } > -} > - > -static void do_monitor_cpu_rack(struct cpu_pid_state *state) > -{ > - s32 temp, power, fan_min; > - int rc; > - > - /* Read current fan status */ > - rc = do_read_one_cpu_values(state, &temp, &power); > - if (rc < 0) { > - /* XXX What do we do now ? */ > - } > - > - /* Check tmax, increment overtemp if we are there. At tmax+8, we go > - * full blown immediately and try to trigger a shutdown > - */ > - if (temp >= ((state->mpu.tmax + 8) << 16)) { > - printk(KERN_WARNING "Warning ! CPU %d temperature way above > maximum" > - " (%d) !\n", > - state->index, temp >> 16); > - state->overtemp = CPU_MAX_OVERTEMP / 4; > - } else if (temp > (state->mpu.tmax << 16)) { > - state->overtemp++; > - printk(KERN_WARNING "CPU %d temperature %d above max %d. > overtemp %d\n", > - state->index, temp >> 16, state->mpu.tmax, > state->overtemp); > - } else { > - if (state->overtemp) > - printk(KERN_WARNING "CPU %d temperature back down to > %d\n", > - state->index, temp >> 16); > - state->overtemp = 0; > - } > - if (state->overtemp >= CPU_MAX_OVERTEMP) > - critical_state = 1; > - if (state->overtemp > 0) { > - state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan; > - goto do_set_fans; > - } > - > - /* Do the PID */ > - do_cpu_pid(state, temp, power); > - > - /* Check clamp from dimms */ > - fan_min = dimm_output_clamp; > - fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan); > - > - DBG(" CPU min mpu = %d, min dimm = %d\n", > - state->mpu.rminn_intake_fan, dimm_output_clamp); > - > - state->rpm = max(state->rpm, (int)fan_min); > - state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan); > - state->intake_rpm = state->rpm; > - > - do_set_fans: > - DBG("** CPU %d RPM: %d overtemp: %d\n", > - state->index, (int)state->rpm, state->overtemp); > - > - /* We should check for errors, shouldn't we ? But then, what > - * do we do once the error occurs ? For FCU notified fan > - * failures (-EFAULT) we probably want to notify userland > - * some way... > - */ > - if (state->index == 0) { > - set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm); > - set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm); > - set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm); > - } else { > - set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm); > - set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm); > - set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm); > - } > -} > - > -/* > - * Initialize the state structure for one CPU control loop > - */ > -static int init_processor_state(struct cpu_pid_state *state, int index) > -{ > - int err; > - > - state->index = index; > - state->first = 1; > - state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000; > - state->overtemp = 0; > - state->adc_config = 0x00; > - > - > - if (index == 0) > - state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, > "CPU0_monitor"); > - else if (index == 1) > - state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, > "CPU1_monitor"); > - if (state->monitor == NULL) > - goto fail; > - > - if (read_eeprom(index, &state->mpu)) > - goto fail; > - > - state->count_power = state->mpu.tguardband; > - if (state->count_power > CPU_POWER_HISTORY_SIZE) { > - printk(KERN_WARNING "Warning ! too many power history slots\n"); > - state->count_power = CPU_POWER_HISTORY_SIZE; > - } > - DBG("CPU %d Using %d power history entries\n", index, > state->count_power); > - > - if (index == 0) { > - err = device_create_file(&of_dev->dev, > &dev_attr_cpu0_temperature); > - err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage); > - err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current); > - err |= device_create_file(&of_dev->dev, > &dev_attr_cpu0_exhaust_fan_rpm); > - err |= device_create_file(&of_dev->dev, > &dev_attr_cpu0_intake_fan_rpm); > - } else { > - err = device_create_file(&of_dev->dev, > &dev_attr_cpu1_temperature); > - err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage); > - err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current); > - err |= device_create_file(&of_dev->dev, > &dev_attr_cpu1_exhaust_fan_rpm); > - err |= device_create_file(&of_dev->dev, > &dev_attr_cpu1_intake_fan_rpm); > - } > - if (err) > - printk(KERN_WARNING "Failed to create some of the attribute" > - "files for CPU %d\n", index); > - > - return 0; > - fail: > - state->monitor = NULL; > - > - return -ENODEV; > -} > - > -/* > - * Dispose of the state data for one CPU control loop > - */ > -static void dispose_processor_state(struct cpu_pid_state *state) > -{ > - if (state->monitor == NULL) > - return; > - > - if (state->index == 0) { > - device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature); > - device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage); > - device_remove_file(&of_dev->dev, &dev_attr_cpu0_current); > - device_remove_file(&of_dev->dev, > &dev_attr_cpu0_exhaust_fan_rpm); > - device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); > - } else { > - device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature); > - device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage); > - device_remove_file(&of_dev->dev, &dev_attr_cpu1_current); > - device_remove_file(&of_dev->dev, > &dev_attr_cpu1_exhaust_fan_rpm); > - device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); > - } > - > - state->monitor = NULL; > -} > - > -/* > - * Motherboard backside & U3 heatsink fan control loop > - */ > -static void do_monitor_backside(struct backside_pid_state *state) > -{ > - s32 temp, integral, derivative, fan_min; > - s64 integ_p, deriv_p, prop_p, sum; > - int i, rc; > - > - if (--state->ticks != 0) > - return; > - state->ticks = backside_params.interval; > - > - DBG("backside:\n"); > - > - /* Check fan status */ > - rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX); > - if (rc < 0) { > - printk(KERN_WARNING "Error %d reading backside fan !\n", rc); > - /* XXX What do we do now ? */ > - } else > - state->pwm = rc; > - DBG(" current pwm: %d\n", state->pwm); > - > - /* Get some sensor readings */ > - temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16; > - state->last_temp = temp; > - DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), > - FIX32TOPRINT(backside_params.input_target)); > - > - /* Store temperature and error in history array */ > - state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE; > - state->sample_history[state->cur_sample] = temp; > - state->error_history[state->cur_sample] = temp - > backside_params.input_target; > - > - /* If first loop, fill the history table */ > - if (state->first) { > - for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) { > - state->cur_sample = (state->cur_sample + 1) % > - BACKSIDE_PID_HISTORY_SIZE; > - state->sample_history[state->cur_sample] = temp; > - state->error_history[state->cur_sample] = > - temp - backside_params.input_target; > - } > - state->first = 0; > - } > - > - /* Calculate the integral term */ > - sum = 0; > - integral = 0; > - for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++) > - integral += state->error_history[i]; > - integral *= backside_params.interval; > - DBG(" integral: %08x\n", integral); > - integ_p = ((s64)backside_params.G_r) * (s64)integral; > - DBG(" integ_p: %d\n", (int)(integ_p >> 36)); > - sum += integ_p; > - > - /* Calculate the derivative term */ > - derivative = state->error_history[state->cur_sample] - > - state->error_history[(state->cur_sample + > BACKSIDE_PID_HISTORY_SIZE - 1) > - % BACKSIDE_PID_HISTORY_SIZE]; > - derivative /= backside_params.interval; > - deriv_p = ((s64)backside_params.G_d) * (s64)derivative; > - DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); > - sum += deriv_p; > - > - /* Calculate the proportional term */ > - prop_p = ((s64)backside_params.G_p) * > (s64)(state->error_history[state->cur_sample]); > - DBG(" prop_p: %d\n", (int)(prop_p >> 36)); > - sum += prop_p; > - > - /* Scale sum */ > - sum >>= 36; > - > - DBG(" sum: %d\n", (int)sum); > - if (backside_params.additive) > - state->pwm += (s32)sum; > - else > - state->pwm = sum; > - > - /* Check for clamp */ > - fan_min = (dimm_output_clamp * 100) / 14000; > - fan_min = max(fan_min, backside_params.output_min); > - > - state->pwm = max(state->pwm, fan_min); > - state->pwm = min(state->pwm, backside_params.output_max); > - > - DBG("** BACKSIDE PWM: %d\n", (int)state->pwm); > - set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm); > -} > - > -/* > - * Initialize the state structure for the backside fan control loop > - */ > -static int init_backside_state(struct backside_pid_state *state) > -{ > - struct device_node *u3; > - int u3h = 1; /* conservative by default */ > - int err; > - > - /* > - * There are different PID params for machines with U3 and machines > - * with U3H, pick the right ones now > - */ > - u3 = of_find_node_by_path("/u3@0,f8000000"); > - if (u3 != NULL) { > - const u32 *vers = of_get_property(u3, "device-rev", NULL); > - if (vers) > - if (((*vers) & 0x3f) < 0x34) > - u3h = 0; > - of_node_put(u3); > - } > - > - if (rackmac) { > - backside_params.G_d = BACKSIDE_PID_RACK_G_d; > - backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET; > - backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; > - backside_params.interval = BACKSIDE_PID_RACK_INTERVAL; > - backside_params.G_p = BACKSIDE_PID_RACK_G_p; > - backside_params.G_r = BACKSIDE_PID_G_r; > - backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; > - backside_params.additive = 0; > - } else if (u3h) { > - backside_params.G_d = BACKSIDE_PID_U3H_G_d; > - backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET; > - backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; > - backside_params.interval = BACKSIDE_PID_INTERVAL; > - backside_params.G_p = BACKSIDE_PID_G_p; > - backside_params.G_r = BACKSIDE_PID_G_r; > - backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; > - backside_params.additive = 1; > - } else { > - backside_params.G_d = BACKSIDE_PID_U3_G_d; > - backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET; > - backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN; > - backside_params.interval = BACKSIDE_PID_INTERVAL; > - backside_params.G_p = BACKSIDE_PID_G_p; > - backside_params.G_r = BACKSIDE_PID_G_r; > - backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; > - backside_params.additive = 1; > - } > - > - state->ticks = 1; > - state->first = 1; > - state->pwm = 50; > - > - state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp"); > - if (state->monitor == NULL) > - return -ENODEV; > - > - err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature); > - err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm); > - if (err) > - printk(KERN_WARNING "Failed to create attribute file(s)" > - " for backside fan\n"); > - > - return 0; > -} > - > -/* > - * Dispose of the state data for the backside control loop > - */ > -static void dispose_backside_state(struct backside_pid_state *state) > -{ > - if (state->monitor == NULL) > - return; > - > - device_remove_file(&of_dev->dev, &dev_attr_backside_temperature); > - device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm); > - > - state->monitor = NULL; > -} > - > -/* > - * Drives bay fan control loop > - */ > -static void do_monitor_drives(struct drives_pid_state *state) > -{ > - s32 temp, integral, derivative; > - s64 integ_p, deriv_p, prop_p, sum; > - int i, rc; > - > - if (--state->ticks != 0) > - return; > - state->ticks = DRIVES_PID_INTERVAL; > - > - DBG("drives:\n"); > - > - /* Check fan status */ > - rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED); > - if (rc < 0) { > - printk(KERN_WARNING "Error %d reading drives fan !\n", rc); > - /* XXX What do we do now ? */ > - } else > - state->rpm = rc; > - DBG(" current rpm: %d\n", state->rpm); > - > - /* Get some sensor readings */ > - temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, > - DS1775_TEMP)) << 8; > - state->last_temp = temp; > - DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), > - FIX32TOPRINT(DRIVES_PID_INPUT_TARGET)); > - > - /* Store temperature and error in history array */ > - state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE; > - state->sample_history[state->cur_sample] = temp; > - state->error_history[state->cur_sample] = temp - > DRIVES_PID_INPUT_TARGET; > - > - /* If first loop, fill the history table */ > - if (state->first) { > - for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) { > - state->cur_sample = (state->cur_sample + 1) % > - DRIVES_PID_HISTORY_SIZE; > - state->sample_history[state->cur_sample] = temp; > - state->error_history[state->cur_sample] = > - temp - DRIVES_PID_INPUT_TARGET; > - } > - state->first = 0; > - } > - > - /* Calculate the integral term */ > - sum = 0; > - integral = 0; > - for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++) > - integral += state->error_history[i]; > - integral *= DRIVES_PID_INTERVAL; > - DBG(" integral: %08x\n", integral); > - integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral; > - DBG(" integ_p: %d\n", (int)(integ_p >> 36)); > - sum += integ_p; > - > - /* Calculate the derivative term */ > - derivative = state->error_history[state->cur_sample] - > - state->error_history[(state->cur_sample + > DRIVES_PID_HISTORY_SIZE - 1) > - % DRIVES_PID_HISTORY_SIZE]; > - derivative /= DRIVES_PID_INTERVAL; > - deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative; > - DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); > - sum += deriv_p; > - > - /* Calculate the proportional term */ > - prop_p = ((s64)DRIVES_PID_G_p) * > (s64)(state->error_history[state->cur_sample]); > - DBG(" prop_p: %d\n", (int)(prop_p >> 36)); > - sum += prop_p; > - > - /* Scale sum */ > - sum >>= 36; > - > - DBG(" sum: %d\n", (int)sum); > - state->rpm += (s32)sum; > - > - state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN); > - state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX); > - > - DBG("** DRIVES RPM: %d\n", (int)state->rpm); > - set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm); > -} > - > -/* > - * Initialize the state structure for the drives bay fan control loop > - */ > -static int init_drives_state(struct drives_pid_state *state) > -{ > - int err; > - > - state->ticks = 1; > - state->first = 1; > - state->rpm = 1000; > - > - state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp"); > - if (state->monitor == NULL) > - return -ENODEV; > - > - err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature); > - err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm); > - if (err) > - printk(KERN_WARNING "Failed to create attribute file(s)" > - " for drives bay fan\n"); > - > - return 0; > -} > - > -/* > - * Dispose of the state data for the drives control loop > - */ > -static void dispose_drives_state(struct drives_pid_state *state) > -{ > - if (state->monitor == NULL) > - return; > - > - device_remove_file(&of_dev->dev, &dev_attr_drives_temperature); > - device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm); > - > - state->monitor = NULL; > -} > - > -/* > - * DIMMs temp control loop > - */ > -static void do_monitor_dimms(struct dimm_pid_state *state) > -{ > - s32 temp, integral, derivative, fan_min; > - s64 integ_p, deriv_p, prop_p, sum; > - int i; > - > - if (--state->ticks != 0) > - return; > - state->ticks = DIMM_PID_INTERVAL; > - > - DBG("DIMM:\n"); > - > - DBG(" current value: %d\n", state->output); > - > - temp = read_lm87_reg(state->monitor, LM87_INT_TEMP); > - if (temp < 0) > - return; > - temp <<= 16; > - state->last_temp = temp; > - DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), > - FIX32TOPRINT(DIMM_PID_INPUT_TARGET)); > - > - /* Store temperature and error in history array */ > - state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE; > - state->sample_history[state->cur_sample] = temp; > - state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET; > - > - /* If first loop, fill the history table */ > - if (state->first) { > - for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) { > - state->cur_sample = (state->cur_sample + 1) % > - DIMM_PID_HISTORY_SIZE; > - state->sample_history[state->cur_sample] = temp; > - state->error_history[state->cur_sample] = > - temp - DIMM_PID_INPUT_TARGET; > - } > - state->first = 0; > - } > - > - /* Calculate the integral term */ > - sum = 0; > - integral = 0; > - for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++) > - integral += state->error_history[i]; > - integral *= DIMM_PID_INTERVAL; > - DBG(" integral: %08x\n", integral); > - integ_p = ((s64)DIMM_PID_G_r) * (s64)integral; > - DBG(" integ_p: %d\n", (int)(integ_p >> 36)); > - sum += integ_p; > - > - /* Calculate the derivative term */ > - derivative = state->error_history[state->cur_sample] - > - state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE > - 1) > - % DIMM_PID_HISTORY_SIZE]; > - derivative /= DIMM_PID_INTERVAL; > - deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative; > - DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); > - sum += deriv_p; > - > - /* Calculate the proportional term */ > - prop_p = ((s64)DIMM_PID_G_p) * > (s64)(state->error_history[state->cur_sample]); > - DBG(" prop_p: %d\n", (int)(prop_p >> 36)); > - sum += prop_p; > - > - /* Scale sum */ > - sum >>= 36; > - > - DBG(" sum: %d\n", (int)sum); > - state->output = (s32)sum; > - state->output = max(state->output, DIMM_PID_OUTPUT_MIN); > - state->output = min(state->output, DIMM_PID_OUTPUT_MAX); > - dimm_output_clamp = state->output; > - > - DBG("** DIMM clamp value: %d\n", (int)state->output); > - > - /* Backside PID is only every 5 seconds, force backside fan clamping > now */ > - fan_min = (dimm_output_clamp * 100) / 14000; > - fan_min = max(fan_min, backside_params.output_min); > - if (backside_state.pwm < fan_min) { > - backside_state.pwm = fan_min; > - DBG(" -> applying clamp to backside fan now: %d !\n", fan_min); > - set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min); > - } > -} > - > -/* > - * Initialize the state structure for the DIMM temp control loop > - */ > -static int init_dimms_state(struct dimm_pid_state *state) > -{ > - state->ticks = 1; > - state->first = 1; > - state->output = 4000; > - > - state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp"); > - if (state->monitor == NULL) > - return -ENODEV; > - > - if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature)) > - printk(KERN_WARNING "Failed to create attribute file" > - " for DIMM temperature\n"); > - > - return 0; > -} > - > -/* > - * Dispose of the state data for the DIMM control loop > - */ > -static void dispose_dimms_state(struct dimm_pid_state *state) > -{ > - if (state->monitor == NULL) > - return; > - > - device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature); > - > - state->monitor = NULL; > -} > - > -/* > - * Slots fan control loop > - */ > -static void do_monitor_slots(struct slots_pid_state *state) > -{ > - s32 temp, integral, derivative; > - s64 integ_p, deriv_p, prop_p, sum; > - int i, rc; > - > - if (--state->ticks != 0) > - return; > - state->ticks = SLOTS_PID_INTERVAL; > - > - DBG("slots:\n"); > - > - /* Check fan status */ > - rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX); > - if (rc < 0) { > - printk(KERN_WARNING "Error %d reading slots fan !\n", rc); > - /* XXX What do we do now ? */ > - } else > - state->pwm = rc; > - DBG(" current pwm: %d\n", state->pwm); > - > - /* Get some sensor readings */ > - temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, > - DS1775_TEMP)) << 8; > - state->last_temp = temp; > - DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), > - FIX32TOPRINT(SLOTS_PID_INPUT_TARGET)); > - > - /* Store temperature and error in history array */ > - state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE; > - state->sample_history[state->cur_sample] = temp; > - state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET; > - > - /* If first loop, fill the history table */ > - if (state->first) { > - for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) { > - state->cur_sample = (state->cur_sample + 1) % > - SLOTS_PID_HISTORY_SIZE; > - state->sample_history[state->cur_sample] = temp; > - state->error_history[state->cur_sample] = > - temp - SLOTS_PID_INPUT_TARGET; > - } > - state->first = 0; > - } > - > - /* Calculate the integral term */ > - sum = 0; > - integral = 0; > - for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++) > - integral += state->error_history[i]; > - integral *= SLOTS_PID_INTERVAL; > - DBG(" integral: %08x\n", integral); > - integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral; > - DBG(" integ_p: %d\n", (int)(integ_p >> 36)); > - sum += integ_p; > - > - /* Calculate the derivative term */ > - derivative = state->error_history[state->cur_sample] - > - state->error_history[(state->cur_sample + > SLOTS_PID_HISTORY_SIZE - 1) > - % SLOTS_PID_HISTORY_SIZE]; > - derivative /= SLOTS_PID_INTERVAL; > - deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative; > - DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); > - sum += deriv_p; > - > - /* Calculate the proportional term */ > - prop_p = ((s64)SLOTS_PID_G_p) * > (s64)(state->error_history[state->cur_sample]); > - DBG(" prop_p: %d\n", (int)(prop_p >> 36)); > - sum += prop_p; > - > - /* Scale sum */ > - sum >>= 36; > - > - DBG(" sum: %d\n", (int)sum); > - state->pwm = (s32)sum; > - > - state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN); > - state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX); > - > - DBG("** DRIVES PWM: %d\n", (int)state->pwm); > - set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm); > -} > - > -/* > - * Initialize the state structure for the slots bay fan control loop > - */ > -static int init_slots_state(struct slots_pid_state *state) > -{ > - int err; > - > - state->ticks = 1; > - state->first = 1; > - state->pwm = 50; > - > - state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp"); > - if (state->monitor == NULL) > - return -ENODEV; > - > - err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature); > - err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm); > - if (err) > - printk(KERN_WARNING "Failed to create attribute file(s)" > - " for slots bay fan\n"); > - > - return 0; > -} > - > -/* > - * Dispose of the state data for the slots control loop > - */ > -static void dispose_slots_state(struct slots_pid_state *state) > -{ > - if (state->monitor == NULL) > - return; > - > - device_remove_file(&of_dev->dev, &dev_attr_slots_temperature); > - device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm); > - > - state->monitor = NULL; > -} > - > - > -static int call_critical_overtemp(void) > -{ > - char *argv[] = { critical_overtemp_path, NULL }; > - static char *envp[] = { "HOME=/", > - "TERM=linux", > - "PATH=/sbin:/usr/sbin:/bin:/usr/bin", > - NULL }; > - > - return call_usermodehelper(critical_overtemp_path, > - argv, envp, UMH_WAIT_EXEC); > -} > - > - > -/* > - * Here's the kernel thread that calls the various control loops > - */ > -static int main_control_loop(void *x) > -{ > - DBG("main_control_loop started\n"); > - > - mutex_lock(&driver_lock); > - > - if (start_fcu() < 0) { > - printk(KERN_ERR "kfand: failed to start FCU\n"); > - mutex_unlock(&driver_lock); > - goto out; > - } > - > - /* Set the PCI fan once for now on non-RackMac */ > - if (!rackmac) > - set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM); > - > - /* Initialize ADCs */ > - initialize_adc(&processor_state[0]); > - if (processor_state[1].monitor != NULL) > - initialize_adc(&processor_state[1]); > - > - fcu_tickle_ticks = FCU_TICKLE_TICKS; > - > - mutex_unlock(&driver_lock); > - > - while (state == state_attached) { > - unsigned long elapsed, start; > - > - start = jiffies; > - > - mutex_lock(&driver_lock); > - > - /* Tickle the FCU just in case */ > - if (--fcu_tickle_ticks < 0) { > - fcu_tickle_ticks = FCU_TICKLE_TICKS; > - tickle_fcu(); > - } > - > - /* First, we always calculate the new DIMMs state on an Xserve > */ > - if (rackmac) > - do_monitor_dimms(&dimms_state); > - > - /* Then, the CPUs */ > - if (cpu_pid_type == CPU_PID_TYPE_COMBINED) > - do_monitor_cpu_combined(); > - else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) { > - do_monitor_cpu_rack(&processor_state[0]); > - if (processor_state[1].monitor != NULL) > - do_monitor_cpu_rack(&processor_state[1]); > - // better deal with UP > - } else { > - do_monitor_cpu_split(&processor_state[0]); > - if (processor_state[1].monitor != NULL) > - do_monitor_cpu_split(&processor_state[1]); > - // better deal with UP > - } > - /* Then, the rest */ > - do_monitor_backside(&backside_state); > - if (rackmac) > - do_monitor_slots(&slots_state); > - else > - do_monitor_drives(&drives_state); > - mutex_unlock(&driver_lock); > - > - if (critical_state == 1) { > - printk(KERN_WARNING "Temperature control detected a > critical condition\n"); > - printk(KERN_WARNING "Attempting to shut down...\n"); > - if (call_critical_overtemp()) { > - printk(KERN_WARNING "Can't call %s, power off > now!\n", > - critical_overtemp_path); > - machine_power_off(); > - } > - } > - if (critical_state > 0) > - critical_state++; > - if (critical_state > MAX_CRITICAL_STATE) { > - printk(KERN_WARNING "Shutdown timed out, power off now > !\n"); > - machine_power_off(); > - } > - > - // FIXME: Deal with signals > - elapsed = jiffies - start; > - if (elapsed < HZ) > - schedule_timeout_interruptible(HZ - elapsed); > - } > - > - out: > - DBG("main_control_loop ended\n"); > - > - ctrl_task = 0; > - complete_and_exit(&ctrl_complete, 0); > -} > - > -/* > - * Dispose the control loops when tearing down > - */ > -static void dispose_control_loops(void) > -{ > - dispose_processor_state(&processor_state[0]); > - dispose_processor_state(&processor_state[1]); > - dispose_backside_state(&backside_state); > - dispose_drives_state(&drives_state); > - dispose_slots_state(&slots_state); > - dispose_dimms_state(&dimms_state); > -} > - > -/* > - * Create the control loops. U3-0 i2c bus is up, so we can now > - * get to the various sensors > - */ > -static int create_control_loops(void) > -{ > - struct device_node *np; > - > - /* Count CPUs from the device-tree, we don't care how many are > - * actually used by Linux > - */ > - cpu_count = 0; > - for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));) > - cpu_count++; > - > - DBG("counted %d CPUs in the device-tree\n", cpu_count); > - > - /* Decide the type of PID algorithm to use based on the presence of > - * the pumps, though that may not be the best way, that is good enough > - * for now > - */ > - if (rackmac) > - cpu_pid_type = CPU_PID_TYPE_RACKMAC; > - else if (of_machine_is_compatible("PowerMac7,3") > - && (cpu_count > 1) > - && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID > - && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) { > - printk(KERN_INFO "Liquid cooling pumps detected, using new > algorithm !\n"); > - cpu_pid_type = CPU_PID_TYPE_COMBINED; > - } else > - cpu_pid_type = CPU_PID_TYPE_SPLIT; > - > - /* Create control loops for everything. If any fail, everything > - * fails > - */ > - if (init_processor_state(&processor_state[0], 0)) > - goto fail; > - if (cpu_pid_type == CPU_PID_TYPE_COMBINED) > - fetch_cpu_pumps_minmax(); > - > - if (cpu_count > 1 && init_processor_state(&processor_state[1], 1)) > - goto fail; > - if (init_backside_state(&backside_state)) > - goto fail; > - if (rackmac && init_dimms_state(&dimms_state)) > - goto fail; > - if (rackmac && init_slots_state(&slots_state)) > - goto fail; > - if (!rackmac && init_drives_state(&drives_state)) > - goto fail; > - > - DBG("all control loops up !\n"); > - > - return 0; > - > - fail: > - DBG("failure creating control loops, disposing\n"); > - > - dispose_control_loops(); > - > - return -ENODEV; > -} > - > -/* > - * Start the control loops after everything is up, that is create > - * the thread that will make them run > - */ > -static void start_control_loops(void) > -{ > - init_completion(&ctrl_complete); > - > - ctrl_task = kthread_run(main_control_loop, NULL, "kfand"); > -} > - > -/* > - * Stop the control loops when tearing down > - */ > -static void stop_control_loops(void) > -{ > - if (ctrl_task) > - wait_for_completion(&ctrl_complete); > -} > - > -/* > - * Attach to the i2c FCU after detecting U3-1 bus > - */ > -static int attach_fcu(void) > -{ > - fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu"); > - if (fcu == NULL) > - return -ENODEV; > - > - DBG("FCU attached\n"); > - > - return 0; > -} > - > -/* > - * Detach from the i2c FCU when tearing down > - */ > -static void detach_fcu(void) > -{ > - fcu = NULL; > -} > - > -/* > - * Attach to the i2c controller. We probe the various chips based > - * on the device-tree nodes and build everything for the driver to > - * run, we then kick the driver monitoring thread > - */ > -static int therm_pm72_attach(struct i2c_adapter *adapter) > -{ > - mutex_lock(&driver_lock); > - > - /* Check state */ > - if (state == state_detached) > - state = state_attaching; > - if (state != state_attaching) { > - mutex_unlock(&driver_lock); > - return 0; > - } > - > - /* Check if we are looking for one of these */ > - if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) { > - u3_0 = adapter; > - DBG("found U3-0\n"); > - if (k2 || !rackmac) > - if (create_control_loops()) > - u3_0 = NULL; > - } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) { > - u3_1 = adapter; > - DBG("found U3-1, attaching FCU\n"); > - if (attach_fcu()) > - u3_1 = NULL; > - } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) { > - k2 = adapter; > - DBG("Found K2\n"); > - if (u3_0 && rackmac) > - if (create_control_loops()) > - k2 = NULL; > - } > - /* We got all we need, start control loops */ > - if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) { > - DBG("everything up, starting control loops\n"); > - state = state_attached; > - start_control_loops(); > - } > - mutex_unlock(&driver_lock); > - > - return 0; > -} > - > -static int therm_pm72_probe(struct i2c_client *client, > - const struct i2c_device_id *id) > -{ > - /* Always succeed, the real work was done in therm_pm72_attach() */ > - return 0; > -} > - > -/* > - * Called when any of the devices which participates into thermal management > - * is going away. > - */ > -static int therm_pm72_remove(struct i2c_client *client) > -{ > - struct i2c_adapter *adapter = client->adapter; > - > - mutex_lock(&driver_lock); > - > - if (state != state_detached) > - state = state_detaching; > - > - /* Stop control loops if any */ > - DBG("stopping control loops\n"); > - mutex_unlock(&driver_lock); > - stop_control_loops(); > - mutex_lock(&driver_lock); > - > - if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) { > - DBG("lost U3-0, disposing control loops\n"); > - dispose_control_loops(); > - u3_0 = NULL; > - } > - > - if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) { > - DBG("lost U3-1, detaching FCU\n"); > - detach_fcu(); > - u3_1 = NULL; > - } > - if (u3_0 == NULL && u3_1 == NULL) > - state = state_detached; > - > - mutex_unlock(&driver_lock); > - > - return 0; > -} > - > -/* > - * i2c_driver structure to attach to the host i2c controller > - */ > - > -static const struct i2c_device_id therm_pm72_id[] = { > - /* > - * Fake device name, thermal management is done by several > - * chips but we don't need to differentiate between them at > - * this point. > - */ > - { "therm_pm72", 0 }, > - { } > -}; > - > -static struct i2c_driver therm_pm72_driver = { > - .driver = { > - .name = "therm_pm72", > - }, > - .attach_adapter = therm_pm72_attach, > - .probe = therm_pm72_probe, > - .remove = therm_pm72_remove, > - .id_table = therm_pm72_id, > -}; > - > -static int fan_check_loc_match(const char *loc, int fan) > -{ > - char tmp[64]; > - char *c, *e; > - > - strlcpy(tmp, fcu_fans[fan].loc, 64); > - > - c = tmp; > - for (;;) { > - e = strchr(c, ','); > - if (e) > - *e = 0; > - if (strcmp(loc, c) == 0) > - return 1; > - if (e == NULL) > - break; > - c = e + 1; > - } > - return 0; > -} > - > -static void fcu_lookup_fans(struct device_node *fcu_node) > -{ > - struct device_node *np = NULL; > - int i; > - > - /* The table is filled by default with values that are suitable > - * for the old machines without device-tree informations. We scan > - * the device-tree and override those values with whatever is > - * there > - */ > - > - DBG("Looking up FCU controls in device-tree...\n"); > - > - while ((np = of_get_next_child(fcu_node, np)) != NULL) { > - int type = -1; > - const char *loc; > - const u32 *reg; > - > - DBG(" control: %s, type: %s\n", np->name, np->type); > - > - /* Detect control type */ > - if (!strcmp(np->type, "fan-rpm-control") || > - !strcmp(np->type, "fan-rpm")) > - type = FCU_FAN_RPM; > - if (!strcmp(np->type, "fan-pwm-control") || > - !strcmp(np->type, "fan-pwm")) > - type = FCU_FAN_PWM; > - /* Only care about fans for now */ > - if (type == -1) > - continue; > - > - /* Lookup for a matching location */ > - loc = of_get_property(np, "location", NULL); > - reg = of_get_property(np, "reg", NULL); > - if (loc == NULL || reg == NULL) > - continue; > - DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg); > - > - for (i = 0; i < FCU_FAN_COUNT; i++) { > - int fan_id; > - > - if (!fan_check_loc_match(loc, i)) > - continue; > - DBG(" location match, index: %d\n", i); > - fcu_fans[i].id = FCU_FAN_ABSENT_ID; > - if (type != fcu_fans[i].type) { > - printk(KERN_WARNING "therm_pm72: Fan type > mismatch " > - "in device-tree for %s\n", > np->full_name); > - break; > - } > - if (type == FCU_FAN_RPM) > - fan_id = ((*reg) - 0x10) / 2; > - else > - fan_id = ((*reg) - 0x30) / 2; > - if (fan_id > 7) { > - printk(KERN_WARNING "therm_pm72: Can't parse " > - "fan ID in device-tree for %s\n", > np->full_name); > - break; > - } > - DBG(" fan id -> %d, type -> %d\n", fan_id, type); > - fcu_fans[i].id = fan_id; > - } > - } > - > - /* Now dump the array */ > - printk(KERN_INFO "Detected fan controls:\n"); > - for (i = 0; i < FCU_FAN_COUNT; i++) { > - if (fcu_fans[i].id == FCU_FAN_ABSENT_ID) > - continue; > - printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i, > - fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM", > - fcu_fans[i].id, fcu_fans[i].loc); > - } > -} > - > -static int fcu_of_probe(struct platform_device* dev) > -{ > - state = state_detached; > - of_dev = dev; > - > - dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION); > - > - /* Lookup the fans in the device tree */ > - fcu_lookup_fans(dev->dev.of_node); > - > - /* Add the driver */ > - return i2c_add_driver(&therm_pm72_driver); > -} > - > -static int fcu_of_remove(struct platform_device* dev) > -{ > - i2c_del_driver(&therm_pm72_driver); > - > - return 0; > -} > - > -static const struct of_device_id fcu_match[] = > -{ > - { > - .type = "fcu", > - }, > - {}, > -}; > -MODULE_DEVICE_TABLE(of, fcu_match); > - > -static struct platform_driver fcu_of_platform_driver = > -{ > - .driver = { > - .name = "temperature", > - .owner = THIS_MODULE, > - .of_match_table = fcu_match, > - }, > - .probe = fcu_of_probe, > - .remove = fcu_of_remove > -}; > - > -/* > - * Check machine type, attach to i2c controller > - */ > -static int __init therm_pm72_init(void) > -{ > - rackmac = of_machine_is_compatible("RackMac3,1"); > - > - if (!of_machine_is_compatible("PowerMac7,2") && > - !of_machine_is_compatible("PowerMac7,3") && > - !rackmac) > - return -ENODEV; > - > - return platform_driver_register(&fcu_of_platform_driver); > -} > - > -static void __exit therm_pm72_exit(void) > -{ > - platform_driver_unregister(&fcu_of_platform_driver); > -} > - > -module_init(therm_pm72_init); > -module_exit(therm_pm72_exit); > - > -MODULE_AUTHOR("Benjamin Herrenschmidt <b...@kernel.crashing.org>"); > -MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control"); > -MODULE_LICENSE("GPL"); > - > diff --git a/drivers/macintosh/therm_pm72.h b/drivers/macintosh/therm_pm72.h > deleted file mode 100644 > index df3680e2a22f..000000000000 > --- a/drivers/macintosh/therm_pm72.h > +++ /dev/null > @@ -1,326 +0,0 @@ > -#ifndef __THERM_PMAC_7_2_H__ > -#define __THERM_PMAC_7_2_H__ > - > -typedef unsigned short fu16; > -typedef int fs32; > -typedef short fs16; > - > -struct mpu_data > -{ > - u8 signature; /* 0x00 - EEPROM sig. */ > - u8 bytes_used; /* 0x01 - Bytes used in eeprom (160 ?) > */ > - u8 size; /* 0x02 - EEPROM size (256 ?) */ > - u8 version; /* 0x03 - EEPROM version */ > - u32 data_revision; /* 0x04 - Dataset revision */ > - u8 processor_bin_code[3]; /* 0x08 - Processor BIN code */ > - u8 bin_code_expansion; /* 0x0b - ??? (padding ?) */ > - u8 processor_num; /* 0x0c - Number of CPUs on this MPU */ > - u8 input_mul_bus_div; /* 0x0d - Clock input multiplier/bus > divider */ > - u8 reserved1[2]; /* 0x0e - */ > - u32 input_clk_freq_high; /* 0x10 - Input clock frequency high */ > - u8 cpu_nb_target_cycles; /* 0x14 - ??? */ > - u8 cpu_statlat; /* 0x15 - ??? */ > - u8 cpu_snooplat; /* 0x16 - ??? */ > - u8 cpu_snoopacc; /* 0x17 - ??? */ > - u8 nb_paamwin; /* 0x18 - ??? */ > - u8 nb_statlat; /* 0x19 - ??? */ > - u8 nb_snooplat; /* 0x1a - ??? */ > - u8 nb_snoopwin; /* 0x1b - ??? */ > - u8 api_bus_mode; /* 0x1c - ??? */ > - u8 reserved2[3]; /* 0x1d - */ > - u32 input_clk_freq_low; /* 0x20 - Input clock frequency low */ > - u8 processor_card_slot; /* 0x24 - Processor card slot number */ > - u8 reserved3[2]; /* 0x25 - */ > - u8 padjmax; /* 0x27 - Max power adjustment (Not in > OF!) */ > - u8 ttarget; /* 0x28 - Target temperature */ > - u8 tmax; /* 0x29 - Max temperature */ > - u8 pmaxh; /* 0x2a - Max power */ > - u8 tguardband; /* 0x2b - Guardband temp ??? Hist. len > in OSX */ > - fs32 pid_gp; /* 0x2c - PID proportional gain */ > - fs32 pid_gr; /* 0x30 - PID reset gain */ > - fs32 pid_gd; /* 0x34 - PID derivative gain */ > - fu16 voph; /* 0x38 - Vop High */ > - fu16 vopl; /* 0x3a - Vop Low */ > - fs16 nactual_die; /* 0x3c - nActual Die */ > - fs16 nactual_heatsink; /* 0x3e - nActual Heatsink */ > - fs16 nactual_system; /* 0x40 - nActual System */ > - u16 calibration_flags; /* 0x42 - Calibration flags */ > - fu16 mdiode; /* 0x44 - Diode M value (scaling > factor) */ > - fs16 bdiode; /* 0x46 - Diode B value (offset) */ > - fs32 theta_heat_sink; /* 0x48 - Theta heat sink */ > - u16 rminn_intake_fan; /* 0x4c - Intake fan min RPM */ > - u16 rmaxn_intake_fan; /* 0x4e - Intake fan max RPM */ > - u16 rminn_exhaust_fan; /* 0x50 - Exhaust fan min RPM */ > - u16 rmaxn_exhaust_fan; /* 0x52 - Exhaust fan max RPM */ > - u8 processor_part_num[8]; /* 0x54 - Processor part number XX > pumps min/max */ > - u32 processor_lot_num; /* 0x5c - Processor lot number */ > - u8 orig_card_sernum[0x10]; /* 0x60 - Card original serial number */ > - u8 curr_card_sernum[0x10]; /* 0x70 - Card current serial number */ > - u8 mlb_sernum[0x18]; /* 0x80 - MLB serial number */ > - u32 checksum1; /* 0x98 - */ > - u32 checksum2; /* 0x9c - */ > -}; /* Total size = 0xa0 */ > - > -/* Display a 16.16 fixed point value */ > -#define FIX32TOPRINT(f) ((f) >> 16),((((f) & 0xffff) * 1000) >> 16) > - > -/* > - * Maximum number of seconds to be in critical state (after a > - * normal shutdown attempt). If the machine isn't down after > - * this counter elapses, we force an immediate machine power > - * off. > - */ > -#define MAX_CRITICAL_STATE 30 > -static char * critical_overtemp_path = "/sbin/critical_overtemp"; > - > -/* > - * This option is "weird" :) Basically, if you define this to 1 > - * the control loop for the RPMs fans (not PWMs) will apply the > - * correction factor obtained from the PID to the _actual_ RPM > - * speed read from the FCU. > - * If you define the below constant to 0, then it will be > - * applied to the setpoint RPM speed, that is basically the > - * speed we proviously "asked" for. > - * > - * I'm not sure which of these Apple's algorithm is supposed > - * to use > - */ > -#define RPM_PID_USE_ACTUAL_SPEED 0 > - > -/* > - * i2c IDs. Currently, we hard code those and assume that > - * the FCU is on U3 bus 1 while all sensors are on U3 bus > - * 0. This appear to be safe enough for this first version > - * of the driver, though I would accept any clean patch > - * doing a better use of the device-tree without turning the > - * while i2c registration mechanism into a racy mess > - * > - * Note: Xserve changed this. We have some bits on the K2 bus, > - * which I arbitrarily set to 0x200. Ultimately, we really want > - * too lookup these in the device-tree though > - */ > -#define FAN_CTRLER_ID 0x15e > -#define SUPPLY_MONITOR_ID 0x58 > -#define SUPPLY_MONITORB_ID 0x5a > -#define DRIVES_DALLAS_ID 0x94 > -#define BACKSIDE_MAX_ID 0x98 > -#define XSERVE_DIMMS_LM87 0x25a > -#define XSERVE_SLOTS_LM75 0x290 > - > -/* > - * Some MAX6690, DS1775, LM87 register definitions > - */ > -#define MAX6690_INT_TEMP 0 > -#define MAX6690_EXT_TEMP 1 > -#define DS1775_TEMP 0 > -#define LM87_INT_TEMP 0x27 > - > -/* > - * Scaling factors for the AD7417 ADC converters (except > - * for the CPU diode which is obtained from the EEPROM). > - * Those values are obtained from the property list of > - * the darwin driver > - */ > -#define ADC_12V_CURRENT_SCALE 0x0320 /* _AD2 */ > -#define ADC_CPU_VOLTAGE_SCALE 0x00a0 /* _AD3 */ > -#define ADC_CPU_CURRENT_SCALE 0x1f40 /* _AD4 */ > - > -/* > - * PID factors for the U3/Backside fan control loop. We have 2 sets > - * of values here, one set for U3 and one set for U3H > - */ > -#define BACKSIDE_FAN_PWM_DEFAULT_ID 1 > -#define BACKSIDE_FAN_PWM_INDEX 0 > -#define BACKSIDE_PID_U3_G_d 0x02800000 > -#define BACKSIDE_PID_U3H_G_d 0x01400000 > -#define BACKSIDE_PID_RACK_G_d 0x00500000 > -#define BACKSIDE_PID_G_p 0x00500000 > -#define BACKSIDE_PID_RACK_G_p 0x0004cccc > -#define BACKSIDE_PID_G_r 0x00000000 > -#define BACKSIDE_PID_U3_INPUT_TARGET 0x00410000 > -#define BACKSIDE_PID_U3H_INPUT_TARGET 0x004b0000 > -#define BACKSIDE_PID_RACK_INPUT_TARGET 0x00460000 > -#define BACKSIDE_PID_INTERVAL 5 > -#define BACKSIDE_PID_RACK_INTERVAL 1 > -#define BACKSIDE_PID_OUTPUT_MAX 100 > -#define BACKSIDE_PID_U3_OUTPUT_MIN 20 > -#define BACKSIDE_PID_U3H_OUTPUT_MIN 20 > -#define BACKSIDE_PID_HISTORY_SIZE 2 > - > -struct basckside_pid_params > -{ > - s32 G_d; > - s32 G_p; > - s32 G_r; > - s32 input_target; > - s32 output_min; > - s32 output_max; > - s32 interval; > - int additive; > -}; > - > -struct backside_pid_state > -{ > - int ticks; > - struct i2c_client * monitor; > - s32 sample_history[BACKSIDE_PID_HISTORY_SIZE]; > - s32 error_history[BACKSIDE_PID_HISTORY_SIZE]; > - int cur_sample; > - s32 last_temp; > - int pwm; > - int first; > -}; > - > -/* > - * PID factors for the Drive Bay fan control loop > - */ > -#define DRIVES_FAN_RPM_DEFAULT_ID 2 > -#define DRIVES_FAN_RPM_INDEX 1 > -#define DRIVES_PID_G_d 0x01e00000 > -#define DRIVES_PID_G_p 0x00500000 > -#define DRIVES_PID_G_r 0x00000000 > -#define DRIVES_PID_INPUT_TARGET 0x00280000 > -#define DRIVES_PID_INTERVAL 5 > -#define DRIVES_PID_OUTPUT_MAX 4000 > -#define DRIVES_PID_OUTPUT_MIN 300 > -#define DRIVES_PID_HISTORY_SIZE 2 > - > -struct drives_pid_state > -{ > - int ticks; > - struct i2c_client * monitor; > - s32 sample_history[BACKSIDE_PID_HISTORY_SIZE]; > - s32 error_history[BACKSIDE_PID_HISTORY_SIZE]; > - int cur_sample; > - s32 last_temp; > - int rpm; > - int first; > -}; > - > -#define SLOTS_FAN_PWM_DEFAULT_ID 2 > -#define SLOTS_FAN_PWM_INDEX 2 > -#define SLOTS_FAN_DEFAULT_PWM 40 /* Do better here ! */ > - > - > -/* > - * PID factors for the Xserve DIMM control loop > - */ > -#define DIMM_PID_G_d 0 > -#define DIMM_PID_G_p 0 > -#define DIMM_PID_G_r 0x06553600 > -#define DIMM_PID_INPUT_TARGET 3276800 > -#define DIMM_PID_INTERVAL 1 > -#define DIMM_PID_OUTPUT_MAX 14000 > -#define DIMM_PID_OUTPUT_MIN 4000 > -#define DIMM_PID_HISTORY_SIZE 20 > - > -struct dimm_pid_state > -{ > - int ticks; > - struct i2c_client * monitor; > - s32 sample_history[DIMM_PID_HISTORY_SIZE]; > - s32 error_history[DIMM_PID_HISTORY_SIZE]; > - int cur_sample; > - s32 last_temp; > - int first; > - int output; > -}; > - > - > -/* > - * PID factors for the Xserve Slots control loop > - */ > -#define SLOTS_PID_G_d 0 > -#define SLOTS_PID_G_p 0 > -#define SLOTS_PID_G_r 0x00100000 > -#define SLOTS_PID_INPUT_TARGET 3200000 > -#define SLOTS_PID_INTERVAL 1 > -#define SLOTS_PID_OUTPUT_MAX 100 > -#define SLOTS_PID_OUTPUT_MIN 20 > -#define SLOTS_PID_HISTORY_SIZE 20 > - > -struct slots_pid_state > -{ > - int ticks; > - struct i2c_client * monitor; > - s32 sample_history[SLOTS_PID_HISTORY_SIZE]; > - s32 error_history[SLOTS_PID_HISTORY_SIZE]; > - int cur_sample; > - s32 last_temp; > - int first; > - int pwm; > -}; > - > - > - > -/* Desktops */ > - > -#define CPUA_INTAKE_FAN_RPM_DEFAULT_ID 3 > -#define CPUA_EXHAUST_FAN_RPM_DEFAULT_ID 4 > -#define CPUB_INTAKE_FAN_RPM_DEFAULT_ID 5 > -#define CPUB_EXHAUST_FAN_RPM_DEFAULT_ID 6 > - > -#define CPUA_INTAKE_FAN_RPM_INDEX 3 > -#define CPUA_EXHAUST_FAN_RPM_INDEX 4 > -#define CPUB_INTAKE_FAN_RPM_INDEX 5 > -#define CPUB_EXHAUST_FAN_RPM_INDEX 6 > - > -#define CPU_INTAKE_SCALE 0x0000f852 > -#define CPU_TEMP_HISTORY_SIZE 2 > -#define CPU_POWER_HISTORY_SIZE 10 > -#define CPU_PID_INTERVAL 1 > -#define CPU_MAX_OVERTEMP 90 > - > -#define CPUA_PUMP_RPM_INDEX 7 > -#define CPUB_PUMP_RPM_INDEX 8 > -#define CPU_PUMP_OUTPUT_MAX 3200 > -#define CPU_PUMP_OUTPUT_MIN 1250 > - > -/* Xserve */ > -#define CPU_A1_FAN_RPM_INDEX 9 > -#define CPU_A2_FAN_RPM_INDEX 10 > -#define CPU_A3_FAN_RPM_INDEX 11 > -#define CPU_B1_FAN_RPM_INDEX 12 > -#define CPU_B2_FAN_RPM_INDEX 13 > -#define CPU_B3_FAN_RPM_INDEX 14 > - > - > -struct cpu_pid_state > -{ > - int index; > - struct i2c_client * monitor; > - struct mpu_data mpu; > - int overtemp; > - s32 temp_history[CPU_TEMP_HISTORY_SIZE]; > - int cur_temp; > - s32 power_history[CPU_POWER_HISTORY_SIZE]; > - s32 error_history[CPU_POWER_HISTORY_SIZE]; > - int cur_power; > - int count_power; > - int rpm; > - int intake_rpm; > - s32 voltage; > - s32 current_a; > - s32 last_temp; > - s32 last_power; > - int first; > - u8 adc_config; > - s32 pump_min; > - s32 pump_max; > -}; > - > -/* Tickle FCU every 10 seconds */ > -#define FCU_TICKLE_TICKS 10 > - > -/* > - * Driver state > - */ > -enum { > - state_detached, > - state_attaching, > - state_attached, > - state_detaching, > -}; > - > - > -#endif /* __THERM_PMAC_7_2_H__ */ _______________________________________________ Linuxppc-dev mailing list Linuxppc-dev@lists.ozlabs.org https://lists.ozlabs.org/listinfo/linuxppc-dev