On Thu, 2014-11-06 at 02:45 +0100, Wolfram Sang wrote:
> The new driver is around for more than 2 years now, so the old one can
> go. Getting rid of it helps the removal of the legacy .attach_adapter
> callback of the I2C subsystem.
> 
> Signed-off-by: Wolfram Sang <w...@the-dreams.de>

Acked-by: Benjamin Herrenschmidt <b...@kernel.crashing.org>

> ---
>  drivers/macintosh/Kconfig      |   10 -
>  drivers/macintosh/Makefile     |    1 -
>  drivers/macintosh/therm_pm72.c | 2279 
> ----------------------------------------
>  drivers/macintosh/therm_pm72.h |  326 ------
>  4 files changed, 2616 deletions(-)
>  delete mode 100644 drivers/macintosh/therm_pm72.c
>  delete mode 100644 drivers/macintosh/therm_pm72.h
> 
> diff --git a/drivers/macintosh/Kconfig b/drivers/macintosh/Kconfig
> index 3067d56b11a6..5844b80bd90e 100644
> --- a/drivers/macintosh/Kconfig
> +++ b/drivers/macintosh/Kconfig
> @@ -204,16 +204,6 @@ config THERM_ADT746X
>            iBook G4, and the ATI based aluminium PowerBooks, allowing slightly
>         better fan behaviour by default, and some manual control.
>  
> -config THERM_PM72
> -     tristate "Support for thermal management on PowerMac G5 (AGP)"
> -     depends on I2C && I2C_POWERMAC && PPC_PMAC64
> -     default n
> -     help
> -       This driver provides thermostat and fan control for the desktop
> -       G5 machines.
> -
> -       This is deprecated, use windfarm instead.
> -
>  config WINDFARM
>       tristate "New PowerMac thermal control infrastructure"
>       depends on PPC
> diff --git a/drivers/macintosh/Makefile b/drivers/macintosh/Makefile
> index d2f0120bc878..383ba920085b 100644
> --- a/drivers/macintosh/Makefile
> +++ b/drivers/macintosh/Makefile
> @@ -25,7 +25,6 @@ obj-$(CONFIG_ADB_IOP)               += adb-iop.o
>  obj-$(CONFIG_ADB_PMU68K)     += via-pmu68k.o
>  obj-$(CONFIG_ADB_MACIO)              += macio-adb.o
>  
> -obj-$(CONFIG_THERM_PM72)     += therm_pm72.o
>  obj-$(CONFIG_THERM_WINDTUNNEL)       += therm_windtunnel.o
>  obj-$(CONFIG_THERM_ADT746X)  += therm_adt746x.o
>  obj-$(CONFIG_WINDFARM)               += windfarm_core.o
> diff --git a/drivers/macintosh/therm_pm72.c b/drivers/macintosh/therm_pm72.c
> deleted file mode 100644
> index 97cfc5ac9fd0..000000000000
> --- a/drivers/macintosh/therm_pm72.c
> +++ /dev/null
> @@ -1,2279 +0,0 @@
> -/*
> - * Device driver for the thermostats & fan controller of  the
> - * Apple G5 "PowerMac7,2" desktop machines.
> - *
> - * (c) Copyright IBM Corp. 2003-2004
> - *
> - * Maintained by: Benjamin Herrenschmidt
> - *                <b...@kernel.crashing.org>
> - * 
> - *
> - * The algorithm used is the PID control algorithm, used the same
> - * way the published Darwin code does, using the same values that
> - * are present in the Darwin 7.0 snapshot property lists.
> - *
> - * As far as the CPUs control loops are concerned, I use the
> - * calibration & PID constants provided by the EEPROM,
> - * I do _not_ embed any value from the property lists, as the ones
> - * provided by Darwin 7.0 seem to always have an older version that
> - * what I've seen on the actual computers.
> - * It would be interesting to verify that though. Darwin has a
> - * version code of 1.0.0d11 for all control loops it seems, while
> - * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
> - *
> - * Darwin doesn't provide source to all parts, some missing
> - * bits like the AppleFCU driver or the actual scale of some
> - * of the values returned by sensors had to be "guessed" some
> - * way... or based on what Open Firmware does.
> - *
> - * I didn't yet figure out how to get the slots power consumption
> - * out of the FCU, so that part has not been implemented yet and
> - * the slots fan is set to a fixed 50% PWM, hoping this value is
> - * safe enough ...
> - *
> - * Note: I have observed strange oscillations of the CPU control
> - * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
> - * oscillates slowly (over several minutes) between the minimum
> - * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
> - * this, it could be some incorrect constant or an error in the
> - * way I ported the algorithm, or it could be just normal. I
> - * don't have full understanding on the way Apple tweaked the PID
> - * algorithm for the CPU control, it is definitely not a standard
> - * implementation...
> - *
> - * TODO:  - Check MPU structure version/signature
> - *        - Add things like /sbin/overtemp for non-critical
> - *          overtemp conditions so userland can take some policy
> - *          decisions, like slowing down CPUs
> - *     - Deal with fan and i2c failures in a better way
> - *     - Maybe do a generic PID based on params used for
> - *       U3 and Drives ? Definitely need to factor code a bit
> - *          better... also make sensor detection more robust using
> - *          the device-tree to probe for them
> - *        - Figure out how to get the slots consumption and set the
> - *          slots fan accordingly
> - *
> - * History:
> - *
> - *  Nov. 13, 2003 : 0.5
> - *   - First release
> - *
> - *  Nov. 14, 2003 : 0.6
> - *   - Read fan speed from FCU, low level fan routines now deal
> - *     with errors & check fan status, though higher level don't
> - *     do much.
> - *   - Move a bunch of definitions to .h file
> - *
> - *  Nov. 18, 2003 : 0.7
> - *   - Fix build on ppc64 kernel
> - *   - Move back statics definitions to .c file
> - *   - Avoid calling schedule_timeout with a negative number
> - *
> - *  Dec. 18, 2003 : 0.8
> - *   - Fix typo when reading back fan speed on 2 CPU machines
> - *
> - *  Mar. 11, 2004 : 0.9
> - *   - Rework code accessing the ADC chips, make it more robust and
> - *     closer to the chip spec. Also make sure it is configured properly,
> - *        I've seen yet unexplained cases where on startup, I would have 
> stale
> - *        values in the configuration register
> - *   - Switch back to use of target fan speed for PID, thus lowering
> - *        pressure on i2c
> - *
> - *  Oct. 20, 2004 : 1.1
> - *   - Add device-tree lookup for fan IDs, should detect liquid cooling
> - *        pumps when present
> - *   - Enable driver for PowerMac7,3 machines
> - *   - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
> - *   - Add new CPU cooling algorithm for machines with liquid cooling
> - *   - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
> - *   - Fix a signed/unsigned compare issue in some PID loops
> - *
> - *  Mar. 10, 2005 : 1.2
> - *   - Add basic support for Xserve G5
> - *   - Retrieve pumps min/max from EEPROM image in device-tree (broken)
> - *   - Use min/max macros here or there
> - *   - Latest darwin updated U3H min fan speed to 20% PWM
> - *
> - *  July. 06, 2006 : 1.3
> - *   - Fix setting of RPM fans on Xserve G5 (they were going too fast)
> - *      - Add missing slots fan control loop for Xserve G5
> - *   - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
> - *        still can't properly implement the control loop for these, so let's
> - *        reduce the noise a little bit, it appears that 40% still gives us
> - *        a pretty good air flow
> - *   - Add code to "tickle" the FCU regulary so it doesn't think that
> - *        we are gone while in fact, the machine just didn't need any fan
> - *        speed change lately
> - *
> - */
> -
> -#include <linux/types.h>
> -#include <linux/module.h>
> -#include <linux/errno.h>
> -#include <linux/kernel.h>
> -#include <linux/delay.h>
> -#include <linux/sched.h>
> -#include <linux/init.h>
> -#include <linux/spinlock.h>
> -#include <linux/wait.h>
> -#include <linux/reboot.h>
> -#include <linux/kmod.h>
> -#include <linux/i2c.h>
> -#include <linux/kthread.h>
> -#include <linux/mutex.h>
> -#include <linux/of_device.h>
> -#include <linux/of_platform.h>
> -#include <asm/prom.h>
> -#include <asm/machdep.h>
> -#include <asm/io.h>
> -#include <asm/sections.h>
> -#include <asm/macio.h>
> -
> -#include "therm_pm72.h"
> -
> -#define VERSION "1.3"
> -
> -#undef DEBUG
> -
> -#ifdef DEBUG
> -#define DBG(args...) printk(args)
> -#else
> -#define DBG(args...) do { } while(0)
> -#endif
> -
> -
> -/*
> - * Driver statics
> - */
> -
> -static struct platform_device *              of_dev;
> -static struct i2c_adapter *          u3_0;
> -static struct i2c_adapter *          u3_1;
> -static struct i2c_adapter *          k2;
> -static struct i2c_client *           fcu;
> -static struct cpu_pid_state          processor_state[2];
> -static struct basckside_pid_params   backside_params;
> -static struct backside_pid_state     backside_state;
> -static struct drives_pid_state               drives_state;
> -static struct dimm_pid_state         dimms_state;
> -static struct slots_pid_state                slots_state;
> -static int                           state;
> -static int                           cpu_count;
> -static int                           cpu_pid_type;
> -static struct task_struct            *ctrl_task;
> -static struct completion             ctrl_complete;
> -static int                           critical_state;
> -static int                           rackmac;
> -static s32                           dimm_output_clamp;
> -static int                           fcu_rpm_shift;
> -static int                           fcu_tickle_ticks;
> -static DEFINE_MUTEX(driver_lock);
> -
> -/*
> - * We have 3 types of CPU PID control. One is "split" old style control
> - * for intake & exhaust fans, the other is "combined" control for both
> - * CPUs that also deals with the pumps when present. To be "compatible"
> - * with OS X at this point, we only use "COMBINED" on the machines that
> - * are identified as having the pumps (though that identification is at
> - * least dodgy). Ultimately, we could probably switch completely to this
> - * algorithm provided we hack it to deal with the UP case
> - */
> -#define CPU_PID_TYPE_SPLIT   0
> -#define CPU_PID_TYPE_COMBINED        1
> -#define CPU_PID_TYPE_RACKMAC 2
> -
> -/*
> - * This table describes all fans in the FCU. The "id" and "type" values
> - * are defaults valid for all earlier machines. Newer machines will
> - * eventually override the table content based on the device-tree
> - */
> -struct fcu_fan_table
> -{
> -     char*   loc;    /* location code */
> -     int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
> -     int     id;     /* id or -1 */
> -};
> -
> -#define FCU_FAN_RPM          0
> -#define FCU_FAN_PWM          1
> -
> -#define FCU_FAN_ABSENT_ID    -1
> -
> -#define FCU_FAN_COUNT                ARRAY_SIZE(fcu_fans)
> -
> -struct fcu_fan_table fcu_fans[] = {
> -     [BACKSIDE_FAN_PWM_INDEX] = {
> -             .loc    = "BACKSIDE,SYS CTRLR FAN",
> -             .type   = FCU_FAN_PWM,
> -             .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
> -     },
> -     [DRIVES_FAN_RPM_INDEX] = {
> -             .loc    = "DRIVE BAY",
> -             .type   = FCU_FAN_RPM,
> -             .id     = DRIVES_FAN_RPM_DEFAULT_ID,
> -     },
> -     [SLOTS_FAN_PWM_INDEX] = {
> -             .loc    = "SLOT,PCI FAN",
> -             .type   = FCU_FAN_PWM,
> -             .id     = SLOTS_FAN_PWM_DEFAULT_ID,
> -     },
> -     [CPUA_INTAKE_FAN_RPM_INDEX] = {
> -             .loc    = "CPU A INTAKE",
> -             .type   = FCU_FAN_RPM,
> -             .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
> -     },
> -     [CPUA_EXHAUST_FAN_RPM_INDEX] = {
> -             .loc    = "CPU A EXHAUST",
> -             .type   = FCU_FAN_RPM,
> -             .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
> -     },
> -     [CPUB_INTAKE_FAN_RPM_INDEX] = {
> -             .loc    = "CPU B INTAKE",
> -             .type   = FCU_FAN_RPM,
> -             .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
> -     },
> -     [CPUB_EXHAUST_FAN_RPM_INDEX] = {
> -             .loc    = "CPU B EXHAUST",
> -             .type   = FCU_FAN_RPM,
> -             .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
> -     },
> -     /* pumps aren't present by default, have to be looked up in the
> -      * device-tree
> -      */
> -     [CPUA_PUMP_RPM_INDEX] = {
> -             .loc    = "CPU A PUMP",
> -             .type   = FCU_FAN_RPM,          
> -             .id     = FCU_FAN_ABSENT_ID,
> -     },
> -     [CPUB_PUMP_RPM_INDEX] = {
> -             .loc    = "CPU B PUMP",
> -             .type   = FCU_FAN_RPM,
> -             .id     = FCU_FAN_ABSENT_ID,
> -     },
> -     /* Xserve fans */
> -     [CPU_A1_FAN_RPM_INDEX] = {
> -             .loc    = "CPU A 1",
> -             .type   = FCU_FAN_RPM,
> -             .id     = FCU_FAN_ABSENT_ID,
> -     },
> -     [CPU_A2_FAN_RPM_INDEX] = {
> -             .loc    = "CPU A 2",
> -             .type   = FCU_FAN_RPM,
> -             .id     = FCU_FAN_ABSENT_ID,
> -     },
> -     [CPU_A3_FAN_RPM_INDEX] = {
> -             .loc    = "CPU A 3",
> -             .type   = FCU_FAN_RPM,
> -             .id     = FCU_FAN_ABSENT_ID,
> -     },
> -     [CPU_B1_FAN_RPM_INDEX] = {
> -             .loc    = "CPU B 1",
> -             .type   = FCU_FAN_RPM,
> -             .id     = FCU_FAN_ABSENT_ID,
> -     },
> -     [CPU_B2_FAN_RPM_INDEX] = {
> -             .loc    = "CPU B 2",
> -             .type   = FCU_FAN_RPM,
> -             .id     = FCU_FAN_ABSENT_ID,
> -     },
> -     [CPU_B3_FAN_RPM_INDEX] = {
> -             .loc    = "CPU B 3",
> -             .type   = FCU_FAN_RPM,
> -             .id     = FCU_FAN_ABSENT_ID,
> -     },
> -};
> -
> -static struct i2c_driver therm_pm72_driver;
> -
> -/*
> - * Utility function to create an i2c_client structure and
> - * attach it to one of u3 adapters
> - */
> -static struct i2c_client *attach_i2c_chip(int id, const char *name)
> -{
> -     struct i2c_client *clt;
> -     struct i2c_adapter *adap;
> -     struct i2c_board_info info;
> -
> -     if (id & 0x200)
> -             adap = k2;
> -     else if (id & 0x100)
> -             adap = u3_1;
> -     else
> -             adap = u3_0;
> -     if (adap == NULL)
> -             return NULL;
> -
> -     memset(&info, 0, sizeof(struct i2c_board_info));
> -     info.addr = (id >> 1) & 0x7f;
> -     strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
> -     clt = i2c_new_device(adap, &info);
> -     if (!clt) {
> -             printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 
> 0x%x\n", id);
> -             return NULL;
> -     }
> -
> -     /*
> -      * Let i2c-core delete that device on driver removal.
> -      * This is safe because i2c-core holds the core_lock mutex for us.
> -      */
> -     list_add_tail(&clt->detected, &therm_pm72_driver.clients);
> -     return clt;
> -}
> -
> -/*
> - * Here are the i2c chip access wrappers
> - */
> -
> -static void initialize_adc(struct cpu_pid_state *state)
> -{
> -     int rc;
> -     u8 buf[2];
> -
> -     /* Read ADC the configuration register and cache it. We
> -      * also make sure Config2 contains proper values, I've seen
> -      * cases where we got stale grabage in there, thus preventing
> -      * proper reading of conv. values
> -      */
> -
> -     /* Clear Config2 */
> -     buf[0] = 5;
> -     buf[1] = 0;
> -     i2c_master_send(state->monitor, buf, 2);
> -
> -     /* Read & cache Config1 */
> -     buf[0] = 1;
> -     rc = i2c_master_send(state->monitor, buf, 1);
> -     if (rc > 0) {
> -             rc = i2c_master_recv(state->monitor, buf, 1);
> -             if (rc > 0) {
> -                     state->adc_config = buf[0];
> -                     DBG("ADC config reg: %02x\n", state->adc_config);
> -                     /* Disable shutdown mode */
> -                     state->adc_config &= 0xfe;
> -                     buf[0] = 1;
> -                     buf[1] = state->adc_config;
> -                     rc = i2c_master_send(state->monitor, buf, 2);
> -             }
> -     }
> -     if (rc <= 0)
> -             printk(KERN_ERR "therm_pm72: Error reading ADC config"
> -                    " register !\n");
> -}
> -
> -static int read_smon_adc(struct cpu_pid_state *state, int chan)
> -{
> -     int rc, data, tries = 0;
> -     u8 buf[2];
> -
> -     for (;;) {
> -             /* Set channel */
> -             buf[0] = 1;
> -             buf[1] = (state->adc_config & 0x1f) | (chan << 5);
> -             rc = i2c_master_send(state->monitor, buf, 2);
> -             if (rc <= 0)
> -                     goto error;
> -             /* Wait for conversion */
> -             msleep(1);
> -             /* Switch to data register */
> -             buf[0] = 4;
> -             rc = i2c_master_send(state->monitor, buf, 1);
> -             if (rc <= 0)
> -                     goto error;
> -             /* Read result */
> -             rc = i2c_master_recv(state->monitor, buf, 2);
> -             if (rc < 0)
> -                     goto error;
> -             data = ((u16)buf[0]) << 8 | (u16)buf[1];
> -             return data >> 6;
> -     error:
> -             DBG("Error reading ADC, retrying...\n");
> -             if (++tries > 10) {
> -                     printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
> -                     return -1;
> -             }
> -             msleep(10);
> -     }
> -}
> -
> -static int read_lm87_reg(struct i2c_client * chip, int reg)
> -{
> -     int rc, tries = 0;
> -     u8 buf;
> -
> -     for (;;) {
> -             /* Set address */
> -             buf = (u8)reg;
> -             rc = i2c_master_send(chip, &buf, 1);
> -             if (rc <= 0)
> -                     goto error;
> -             rc = i2c_master_recv(chip, &buf, 1);
> -             if (rc <= 0)
> -                     goto error;
> -             return (int)buf;
> -     error:
> -             DBG("Error reading LM87, retrying...\n");
> -             if (++tries > 10) {
> -                     printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
> -                     return -1;
> -             }
> -             msleep(10);
> -     }
> -}
> -
> -static int fan_read_reg(int reg, unsigned char *buf, int nb)
> -{
> -     int tries, nr, nw;
> -
> -     buf[0] = reg;
> -     tries = 0;
> -     for (;;) {
> -             nw = i2c_master_send(fcu, buf, 1);
> -             if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
> -                     break;
> -             msleep(10);
> -             ++tries;
> -     }
> -     if (nw <= 0) {
> -             printk(KERN_ERR "Failure writing address to FCU: %d", nw);
> -             return -EIO;
> -     }
> -     tries = 0;
> -     for (;;) {
> -             nr = i2c_master_recv(fcu, buf, nb);
> -             if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
> -                     break;
> -             msleep(10);
> -             ++tries;
> -     }
> -     if (nr <= 0)
> -             printk(KERN_ERR "Failure reading data from FCU: %d", nw);
> -     return nr;
> -}
> -
> -static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
> -{
> -     int tries, nw;
> -     unsigned char buf[16];
> -
> -     buf[0] = reg;
> -     memcpy(buf+1, ptr, nb);
> -     ++nb;
> -     tries = 0;
> -     for (;;) {
> -             nw = i2c_master_send(fcu, buf, nb);
> -             if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
> -                     break;
> -             msleep(10);
> -             ++tries;
> -     }
> -     if (nw < 0)
> -             printk(KERN_ERR "Failure writing to FCU: %d", nw);
> -     return nw;
> -}
> -
> -static int start_fcu(void)
> -{
> -     unsigned char buf = 0xff;
> -     int rc;
> -
> -     rc = fan_write_reg(0xe, &buf, 1);
> -     if (rc < 0)
> -             return -EIO;
> -     rc = fan_write_reg(0x2e, &buf, 1);
> -     if (rc < 0)
> -             return -EIO;
> -     rc = fan_read_reg(0, &buf, 1);
> -     if (rc < 0)
> -             return -EIO;
> -     fcu_rpm_shift = (buf == 1) ? 2 : 3;
> -     printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
> -            fcu_rpm_shift);
> -
> -     return 0;
> -}
> -
> -static int set_rpm_fan(int fan_index, int rpm)
> -{
> -     unsigned char buf[2];
> -     int rc, id, min, max;
> -
> -     if (fcu_fans[fan_index].type != FCU_FAN_RPM)
> -             return -EINVAL;
> -     id = fcu_fans[fan_index].id; 
> -     if (id == FCU_FAN_ABSENT_ID)
> -             return -EINVAL;
> -
> -     min = 2400 >> fcu_rpm_shift;
> -     max = 56000 >> fcu_rpm_shift;
> -
> -     if (rpm < min)
> -             rpm = min;
> -     else if (rpm > max)
> -             rpm = max;
> -     buf[0] = rpm >> (8 - fcu_rpm_shift);
> -     buf[1] = rpm << fcu_rpm_shift;
> -     rc = fan_write_reg(0x10 + (id * 2), buf, 2);
> -     if (rc < 0)
> -             return -EIO;
> -     return 0;
> -}
> -
> -static int get_rpm_fan(int fan_index, int programmed)
> -{
> -     unsigned char failure;
> -     unsigned char active;
> -     unsigned char buf[2];
> -     int rc, id, reg_base;
> -
> -     if (fcu_fans[fan_index].type != FCU_FAN_RPM)
> -             return -EINVAL;
> -     id = fcu_fans[fan_index].id; 
> -     if (id == FCU_FAN_ABSENT_ID)
> -             return -EINVAL;
> -
> -     rc = fan_read_reg(0xb, &failure, 1);
> -     if (rc != 1)
> -             return -EIO;
> -     if ((failure & (1 << id)) != 0)
> -             return -EFAULT;
> -     rc = fan_read_reg(0xd, &active, 1);
> -     if (rc != 1)
> -             return -EIO;
> -     if ((active & (1 << id)) == 0)
> -             return -ENXIO;
> -
> -     /* Programmed value or real current speed */
> -     reg_base = programmed ? 0x10 : 0x11;
> -     rc = fan_read_reg(reg_base + (id * 2), buf, 2);
> -     if (rc != 2)
> -             return -EIO;
> -
> -     return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
> -}
> -
> -static int set_pwm_fan(int fan_index, int pwm)
> -{
> -     unsigned char buf[2];
> -     int rc, id;
> -
> -     if (fcu_fans[fan_index].type != FCU_FAN_PWM)
> -             return -EINVAL;
> -     id = fcu_fans[fan_index].id; 
> -     if (id == FCU_FAN_ABSENT_ID)
> -             return -EINVAL;
> -
> -     if (pwm < 10)
> -             pwm = 10;
> -     else if (pwm > 100)
> -             pwm = 100;
> -     pwm = (pwm * 2559) / 1000;
> -     buf[0] = pwm;
> -     rc = fan_write_reg(0x30 + (id * 2), buf, 1);
> -     if (rc < 0)
> -             return rc;
> -     return 0;
> -}
> -
> -static int get_pwm_fan(int fan_index)
> -{
> -     unsigned char failure;
> -     unsigned char active;
> -     unsigned char buf[2];
> -     int rc, id;
> -
> -     if (fcu_fans[fan_index].type != FCU_FAN_PWM)
> -             return -EINVAL;
> -     id = fcu_fans[fan_index].id; 
> -     if (id == FCU_FAN_ABSENT_ID)
> -             return -EINVAL;
> -
> -     rc = fan_read_reg(0x2b, &failure, 1);
> -     if (rc != 1)
> -             return -EIO;
> -     if ((failure & (1 << id)) != 0)
> -             return -EFAULT;
> -     rc = fan_read_reg(0x2d, &active, 1);
> -     if (rc != 1)
> -             return -EIO;
> -     if ((active & (1 << id)) == 0)
> -             return -ENXIO;
> -
> -     /* Programmed value or real current speed */
> -     rc = fan_read_reg(0x30 + (id * 2), buf, 1);
> -     if (rc != 1)
> -             return -EIO;
> -
> -     return (buf[0] * 1000) / 2559;
> -}
> -
> -static void tickle_fcu(void)
> -{
> -     int pwm;
> -
> -     pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
> -
> -     DBG("FCU Tickle, slots fan is: %d\n", pwm);
> -     if (pwm < 0)
> -             pwm = 100;
> -
> -     if (!rackmac) {
> -             pwm = SLOTS_FAN_DEFAULT_PWM;
> -     } else if (pwm < SLOTS_PID_OUTPUT_MIN)
> -             pwm = SLOTS_PID_OUTPUT_MIN;
> -
> -     /* That is hopefully enough to make the FCU happy */
> -     set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
> -}
> -
> -
> -/*
> - * Utility routine to read the CPU calibration EEPROM data
> - * from the device-tree
> - */
> -static int read_eeprom(int cpu, struct mpu_data *out)
> -{
> -     struct device_node *np;
> -     char nodename[64];
> -     const u8 *data;
> -     int len;
> -
> -     /* prom.c routine for finding a node by path is a bit brain dead
> -      * and requires exact @xxx unit numbers. This is a bit ugly but
> -      * will work for these machines
> -      */
> -     sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
> -     np = of_find_node_by_path(nodename);
> -     if (np == NULL) {
> -             printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from 
> device-tree\n");
> -             return -ENODEV;
> -     }
> -     data = of_get_property(np, "cpuid", &len);
> -     if (data == NULL) {
> -             printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property 
> from device-tree\n");
> -             of_node_put(np);
> -             return -ENODEV;
> -     }
> -     memcpy(out, data, sizeof(struct mpu_data));
> -     of_node_put(np);
> -     
> -     return 0;
> -}
> -
> -static void fetch_cpu_pumps_minmax(void)
> -{
> -     struct cpu_pid_state *state0 = &processor_state[0];
> -     struct cpu_pid_state *state1 = &processor_state[1];
> -     u16 pump_min = 0, pump_max = 0xffff;
> -     u16 tmp[4];
> -
> -     /* Try to fetch pumps min/max infos from eeprom */
> -
> -     memcpy(&tmp, &state0->mpu.processor_part_num, 8);
> -     if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
> -             pump_min = max(pump_min, tmp[0]);
> -             pump_max = min(pump_max, tmp[1]);
> -     }
> -     if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
> -             pump_min = max(pump_min, tmp[2]);
> -             pump_max = min(pump_max, tmp[3]);
> -     }
> -
> -     /* Double check the values, this _IS_ needed as the EEPROM on
> -      * some dual 2.5Ghz G5s seem, at least, to have both min & max
> -      * same to the same value ... (grrrr)
> -      */
> -     if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
> -             pump_min = CPU_PUMP_OUTPUT_MIN;
> -             pump_max = CPU_PUMP_OUTPUT_MAX;
> -     }
> -
> -     state0->pump_min = state1->pump_min = pump_min;
> -     state0->pump_max = state1->pump_max = pump_max;
> -}
> -
> -/* 
> - * Now, unfortunately, sysfs doesn't give us a nice void * we could
> - * pass around to the attribute functions, so we don't really have
> - * choice but implement a bunch of them...
> - *
> - * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
> - * the input twice... I accept patches :)
> - */
> -#define BUILD_SHOW_FUNC_FIX(name, data)                              \
> -static ssize_t show_##name(struct device *dev, struct device_attribute 
> *attr, char *buf)     \
> -{                                                            \
> -     ssize_t r;                                              \
> -     mutex_lock(&driver_lock);                                       \
> -     r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
> -     mutex_unlock(&driver_lock);                                     \
> -     return r;                                               \
> -}
> -#define BUILD_SHOW_FUNC_INT(name, data)                              \
> -static ssize_t show_##name(struct device *dev, struct device_attribute 
> *attr, char *buf)     \
> -{                                                            \
> -     return sprintf(buf, "%d", data);                        \
> -}
> -
> -BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
> -BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
> -BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
> -BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
> -BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
> -
> -BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
> -BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
> -BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
> -BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
> -BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
> -
> -BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
> -BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
> -
> -BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
> -BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
> -
> -BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
> -BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
> -
> -BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
> -
> -static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
> -static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
> -static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
> -static 
> DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
> -static 
> DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
> -
> -static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
> -static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
> -static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
> -static 
> DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
> -static 
> DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
> -
> -static 
> DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
> -static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
> -
> -static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
> -static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
> -
> -static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
> -static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
> -
> -static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
> -
> -/*
> - * CPUs fans control loop
> - */
> -
> -static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, 
> s32 *power)
> -{
> -     s32 ltemp, volts, amps;
> -     int index, rc = 0;
> -
> -     /* Default (in case of error) */
> -     *temp = state->cur_temp;
> -     *power = state->cur_power;
> -
> -     if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
> -             index = (state->index == 0) ?
> -                     CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
> -     else
> -             index = (state->index == 0) ?
> -                     CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
> -
> -     /* Read current fan status */
> -     rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
> -     if (rc < 0) {
> -             /* XXX What do we do now ? Nothing for now, keep old value, but
> -              * return error upstream
> -              */
> -             DBG("  cpu %d, fan reading error !\n", state->index);
> -     } else {
> -             state->rpm = rc;
> -             DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
> -     }
> -
> -     /* Get some sensor readings and scale it */
> -     ltemp = read_smon_adc(state, 1);
> -     if (ltemp == -1) {
> -             /* XXX What do we do now ? */
> -             state->overtemp++;
> -             if (rc == 0)
> -                     rc = -EIO;
> -             DBG("  cpu %d, temp reading error !\n", state->index);
> -     } else {
> -             /* Fixup temperature according to diode calibration
> -              */
> -             DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
> -                 state->index,
> -                 ltemp, state->mpu.mdiode, state->mpu.bdiode);
> -             *temp = ((s32)ltemp * (s32)state->mpu.mdiode + 
> ((s32)state->mpu.bdiode << 12)) >> 2;
> -             state->last_temp = *temp;
> -             DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
> -     }
> -
> -     /*
> -      * Read voltage & current and calculate power
> -      */
> -     volts = read_smon_adc(state, 3);
> -     amps = read_smon_adc(state, 4);
> -
> -     /* Scale voltage and current raw sensor values according to fixed scales
> -      * obtained in Darwin and calculate power from I and V
> -      */
> -     volts *= ADC_CPU_VOLTAGE_SCALE;
> -     amps *= ADC_CPU_CURRENT_SCALE;
> -     *power = (((u64)volts) * ((u64)amps)) >> 16;
> -     state->voltage = volts;
> -     state->current_a = amps;
> -     state->last_power = *power;
> -
> -     DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
> -         state->index, FIX32TOPRINT(state->current_a),
> -         FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
> -
> -     return 0;
> -}
> -
> -static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
> -{
> -     s32 power_target, integral, derivative, proportional, adj_in_target, 
> sval;
> -     s64 integ_p, deriv_p, prop_p, sum; 
> -     int i;
> -
> -     /* Calculate power target value (could be done once for all)
> -      * and convert to a 16.16 fp number
> -      */
> -     power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
> -     DBG("  power target: %d.%03d, error: %d.%03d\n",
> -         FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
> -
> -     /* Store temperature and power in history array */
> -     state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
> -     state->temp_history[state->cur_temp] = temp;
> -     state->cur_power = (state->cur_power + 1) % state->count_power;
> -     state->power_history[state->cur_power] = power;
> -     state->error_history[state->cur_power] = power_target - power;
> -     
> -     /* If first loop, fill the history table */
> -     if (state->first) {
> -             for (i = 0; i < (state->count_power - 1); i++) {
> -                     state->cur_power = (state->cur_power + 1) % 
> state->count_power;
> -                     state->power_history[state->cur_power] = power;
> -                     state->error_history[state->cur_power] = power_target - 
> power;
> -             }
> -             for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
> -                     state->cur_temp = (state->cur_temp + 1) % 
> CPU_TEMP_HISTORY_SIZE;
> -                     state->temp_history[state->cur_temp] = temp;            
>         
> -             }
> -             state->first = 0;
> -     }
> -
> -     /* Calculate the integral term normally based on the "power" values */
> -     sum = 0;
> -     integral = 0;
> -     for (i = 0; i < state->count_power; i++)
> -             integral += state->error_history[i];
> -     integral *= CPU_PID_INTERVAL;
> -     DBG("  integral: %08x\n", integral);
> -
> -     /* Calculate the adjusted input (sense value).
> -      *   G_r is 12.20
> -      *   integ is 16.16
> -      *   so the result is 28.36
> -      *
> -      * input target is mpu.ttarget, input max is mpu.tmax
> -      */
> -     integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
> -     DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -     sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
> -     adj_in_target = (state->mpu.ttarget << 16);
> -     if (adj_in_target > sval)
> -             adj_in_target = sval;
> -     DBG("   adj_in_target: %d.%03d, ttarget: %d\n", 
> FIX32TOPRINT(adj_in_target),
> -         state->mpu.ttarget);
> -
> -     /* Calculate the derivative term */
> -     derivative = state->temp_history[state->cur_temp] -
> -             state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 
> 1)
> -                                 % CPU_TEMP_HISTORY_SIZE];
> -     derivative /= CPU_PID_INTERVAL;
> -     deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
> -     DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -     sum += deriv_p;
> -
> -     /* Calculate the proportional term */
> -     proportional = temp - adj_in_target;
> -     prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
> -     DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -     sum += prop_p;
> -
> -     /* Scale sum */
> -     sum >>= 36;
> -
> -     DBG("   sum: %d\n", (int)sum);
> -     state->rpm += (s32)sum;
> -}
> -
> -static void do_monitor_cpu_combined(void)
> -{
> -     struct cpu_pid_state *state0 = &processor_state[0];
> -     struct cpu_pid_state *state1 = &processor_state[1];
> -     s32 temp0, power0, temp1, power1;
> -     s32 temp_combi, power_combi;
> -     int rc, intake, pump;
> -
> -     rc = do_read_one_cpu_values(state0, &temp0, &power0);
> -     if (rc < 0) {
> -             /* XXX What do we do now ? */
> -     }
> -     state1->overtemp = 0;
> -     rc = do_read_one_cpu_values(state1, &temp1, &power1);
> -     if (rc < 0) {
> -             /* XXX What do we do now ? */
> -     }
> -     if (state1->overtemp)
> -             state0->overtemp++;
> -
> -     temp_combi = max(temp0, temp1);
> -     power_combi = max(power0, power1);
> -
> -     /* Check tmax, increment overtemp if we are there. At tmax+8, we go
> -      * full blown immediately and try to trigger a shutdown
> -      */
> -     if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
> -             printk(KERN_WARNING "Warning ! Temperature way above maximum 
> (%d) !\n",
> -                    temp_combi >> 16);
> -             state0->overtemp += CPU_MAX_OVERTEMP / 4;
> -     } else if (temp_combi > (state0->mpu.tmax << 16)) {
> -             state0->overtemp++;
> -             printk(KERN_WARNING "Temperature %d above max %d. overtemp 
> %d\n",
> -                    temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
> -     } else {
> -             if (state0->overtemp)
> -                     printk(KERN_WARNING "Temperature back down to %d\n",
> -                            temp_combi >> 16);
> -             state0->overtemp = 0;
> -     }
> -     if (state0->overtemp >= CPU_MAX_OVERTEMP)
> -             critical_state = 1;
> -     if (state0->overtemp > 0) {
> -             state0->rpm = state0->mpu.rmaxn_exhaust_fan;
> -             state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
> -             pump = state0->pump_max;
> -             goto do_set_fans;
> -     }
> -
> -     /* Do the PID */
> -     do_cpu_pid(state0, temp_combi, power_combi);
> -
> -     /* Range check */
> -     state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
> -     state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
> -
> -     /* Calculate intake fan speed */
> -     intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
> -     intake = max(intake, (int)state0->mpu.rminn_intake_fan);
> -     intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
> -     state0->intake_rpm = intake;
> -
> -     /* Calculate pump speed */
> -     pump = (state0->rpm * state0->pump_max) /
> -             state0->mpu.rmaxn_exhaust_fan;
> -     pump = min(pump, state0->pump_max);
> -     pump = max(pump, state0->pump_min);
> -     
> - do_set_fans:
> -     /* We copy values from state 0 to state 1 for /sysfs */
> -     state1->rpm = state0->rpm;
> -     state1->intake_rpm = state0->intake_rpm;
> -
> -     DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
> -         state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
> -
> -     /* We should check for errors, shouldn't we ? But then, what
> -      * do we do once the error occurs ? For FCU notified fan
> -      * failures (-EFAULT) we probably want to notify userland
> -      * some way...
> -      */
> -     set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
> -     set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
> -     set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
> -     set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
> -
> -     if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
> -             set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
> -     if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
> -             set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
> -}
> -
> -static void do_monitor_cpu_split(struct cpu_pid_state *state)
> -{
> -     s32 temp, power;
> -     int rc, intake;
> -
> -     /* Read current fan status */
> -     rc = do_read_one_cpu_values(state, &temp, &power);
> -     if (rc < 0) {
> -             /* XXX What do we do now ? */
> -     }
> -
> -     /* Check tmax, increment overtemp if we are there. At tmax+8, we go
> -      * full blown immediately and try to trigger a shutdown
> -      */
> -     if (temp >= ((state->mpu.tmax + 8) << 16)) {
> -             printk(KERN_WARNING "Warning ! CPU %d temperature way above 
> maximum"
> -                    " (%d) !\n",
> -                    state->index, temp >> 16);
> -             state->overtemp += CPU_MAX_OVERTEMP / 4;
> -     } else if (temp > (state->mpu.tmax << 16)) {
> -             state->overtemp++;
> -             printk(KERN_WARNING "CPU %d temperature %d above max %d. 
> overtemp %d\n",
> -                    state->index, temp >> 16, state->mpu.tmax, 
> state->overtemp);
> -     } else {
> -             if (state->overtemp)
> -                     printk(KERN_WARNING "CPU %d temperature back down to 
> %d\n",
> -                            state->index, temp >> 16);
> -             state->overtemp = 0;
> -     }
> -     if (state->overtemp >= CPU_MAX_OVERTEMP)
> -             critical_state = 1;
> -     if (state->overtemp > 0) {
> -             state->rpm = state->mpu.rmaxn_exhaust_fan;
> -             state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
> -             goto do_set_fans;
> -     }
> -
> -     /* Do the PID */
> -     do_cpu_pid(state, temp, power);
> -
> -     /* Range check */
> -     state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
> -     state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
> -
> -     /* Calculate intake fan */
> -     intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
> -     intake = max(intake, (int)state->mpu.rminn_intake_fan);
> -     intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
> -     state->intake_rpm = intake;
> -
> - do_set_fans:
> -     DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
> -         state->index, (int)state->rpm, intake, state->overtemp);
> -
> -     /* We should check for errors, shouldn't we ? But then, what
> -      * do we do once the error occurs ? For FCU notified fan
> -      * failures (-EFAULT) we probably want to notify userland
> -      * some way...
> -      */
> -     if (state->index == 0) {
> -             set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
> -             set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
> -     } else {
> -             set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
> -             set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
> -     }
> -}
> -
> -static void do_monitor_cpu_rack(struct cpu_pid_state *state)
> -{
> -     s32 temp, power, fan_min;
> -     int rc;
> -
> -     /* Read current fan status */
> -     rc = do_read_one_cpu_values(state, &temp, &power);
> -     if (rc < 0) {
> -             /* XXX What do we do now ? */
> -     }
> -
> -     /* Check tmax, increment overtemp if we are there. At tmax+8, we go
> -      * full blown immediately and try to trigger a shutdown
> -      */
> -     if (temp >= ((state->mpu.tmax + 8) << 16)) {
> -             printk(KERN_WARNING "Warning ! CPU %d temperature way above 
> maximum"
> -                    " (%d) !\n",
> -                    state->index, temp >> 16);
> -             state->overtemp = CPU_MAX_OVERTEMP / 4;
> -     } else if (temp > (state->mpu.tmax << 16)) {
> -             state->overtemp++;
> -             printk(KERN_WARNING "CPU %d temperature %d above max %d. 
> overtemp %d\n",
> -                    state->index, temp >> 16, state->mpu.tmax, 
> state->overtemp);
> -     } else {
> -             if (state->overtemp)
> -                     printk(KERN_WARNING "CPU %d temperature back down to 
> %d\n",
> -                            state->index, temp >> 16);
> -             state->overtemp = 0;
> -     }
> -     if (state->overtemp >= CPU_MAX_OVERTEMP)
> -             critical_state = 1;
> -     if (state->overtemp > 0) {
> -             state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
> -             goto do_set_fans;
> -     }
> -
> -     /* Do the PID */
> -     do_cpu_pid(state, temp, power);
> -
> -     /* Check clamp from dimms */
> -     fan_min = dimm_output_clamp;
> -     fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
> -
> -     DBG(" CPU min mpu = %d, min dimm = %d\n",
> -         state->mpu.rminn_intake_fan, dimm_output_clamp);
> -
> -     state->rpm = max(state->rpm, (int)fan_min);
> -     state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
> -     state->intake_rpm = state->rpm;
> -
> - do_set_fans:
> -     DBG("** CPU %d RPM: %d overtemp: %d\n",
> -         state->index, (int)state->rpm, state->overtemp);
> -
> -     /* We should check for errors, shouldn't we ? But then, what
> -      * do we do once the error occurs ? For FCU notified fan
> -      * failures (-EFAULT) we probably want to notify userland
> -      * some way...
> -      */
> -     if (state->index == 0) {
> -             set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
> -             set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
> -             set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
> -     } else {
> -             set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
> -             set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
> -             set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
> -     }
> -}
> -
> -/*
> - * Initialize the state structure for one CPU control loop
> - */
> -static int init_processor_state(struct cpu_pid_state *state, int index)
> -{
> -     int err;
> -
> -     state->index = index;
> -     state->first = 1;
> -     state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
> -     state->overtemp = 0;
> -     state->adc_config = 0x00;
> -
> -
> -     if (index == 0)
> -             state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, 
> "CPU0_monitor");
> -     else if (index == 1)
> -             state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, 
> "CPU1_monitor");
> -     if (state->monitor == NULL)
> -             goto fail;
> -
> -     if (read_eeprom(index, &state->mpu))
> -             goto fail;
> -
> -     state->count_power = state->mpu.tguardband;
> -     if (state->count_power > CPU_POWER_HISTORY_SIZE) {
> -             printk(KERN_WARNING "Warning ! too many power history slots\n");
> -             state->count_power = CPU_POWER_HISTORY_SIZE;
> -     }
> -     DBG("CPU %d Using %d power history entries\n", index, 
> state->count_power);
> -
> -     if (index == 0) {
> -             err = device_create_file(&of_dev->dev, 
> &dev_attr_cpu0_temperature);
> -             err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
> -             err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
> -             err |= device_create_file(&of_dev->dev, 
> &dev_attr_cpu0_exhaust_fan_rpm);
> -             err |= device_create_file(&of_dev->dev, 
> &dev_attr_cpu0_intake_fan_rpm);
> -     } else {
> -             err = device_create_file(&of_dev->dev, 
> &dev_attr_cpu1_temperature);
> -             err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
> -             err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
> -             err |= device_create_file(&of_dev->dev, 
> &dev_attr_cpu1_exhaust_fan_rpm);
> -             err |= device_create_file(&of_dev->dev, 
> &dev_attr_cpu1_intake_fan_rpm);
> -     }
> -     if (err)
> -             printk(KERN_WARNING "Failed to create some of the attribute"
> -                     "files for CPU %d\n", index);
> -
> -     return 0;
> - fail:
> -     state->monitor = NULL;
> -     
> -     return -ENODEV;
> -}
> -
> -/*
> - * Dispose of the state data for one CPU control loop
> - */
> -static void dispose_processor_state(struct cpu_pid_state *state)
> -{
> -     if (state->monitor == NULL)
> -             return;
> -
> -     if (state->index == 0) {
> -             device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
> -             device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
> -             device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
> -             device_remove_file(&of_dev->dev, 
> &dev_attr_cpu0_exhaust_fan_rpm);
> -             device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
> -     } else {
> -             device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
> -             device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
> -             device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
> -             device_remove_file(&of_dev->dev, 
> &dev_attr_cpu1_exhaust_fan_rpm);
> -             device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
> -     }
> -
> -     state->monitor = NULL;
> -}
> -
> -/*
> - * Motherboard backside & U3 heatsink fan control loop
> - */
> -static void do_monitor_backside(struct backside_pid_state *state)
> -{
> -     s32 temp, integral, derivative, fan_min;
> -     s64 integ_p, deriv_p, prop_p, sum; 
> -     int i, rc;
> -
> -     if (--state->ticks != 0)
> -             return;
> -     state->ticks = backside_params.interval;
> -
> -     DBG("backside:\n");
> -
> -     /* Check fan status */
> -     rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
> -     if (rc < 0) {
> -             printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
> -             /* XXX What do we do now ? */
> -     } else
> -             state->pwm = rc;
> -     DBG("  current pwm: %d\n", state->pwm);
> -
> -     /* Get some sensor readings */
> -     temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
> -     state->last_temp = temp;
> -     DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
> -         FIX32TOPRINT(backside_params.input_target));
> -
> -     /* Store temperature and error in history array */
> -     state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
> -     state->sample_history[state->cur_sample] = temp;
> -     state->error_history[state->cur_sample] = temp - 
> backside_params.input_target;
> -     
> -     /* If first loop, fill the history table */
> -     if (state->first) {
> -             for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
> -                     state->cur_sample = (state->cur_sample + 1) %
> -                             BACKSIDE_PID_HISTORY_SIZE;
> -                     state->sample_history[state->cur_sample] = temp;
> -                     state->error_history[state->cur_sample] =
> -                             temp - backside_params.input_target;
> -             }
> -             state->first = 0;
> -     }
> -
> -     /* Calculate the integral term */
> -     sum = 0;
> -     integral = 0;
> -     for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
> -             integral += state->error_history[i];
> -     integral *= backside_params.interval;
> -     DBG("  integral: %08x\n", integral);
> -     integ_p = ((s64)backside_params.G_r) * (s64)integral;
> -     DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -     sum += integ_p;
> -
> -     /* Calculate the derivative term */
> -     derivative = state->error_history[state->cur_sample] -
> -             state->error_history[(state->cur_sample + 
> BACKSIDE_PID_HISTORY_SIZE - 1)
> -                                 % BACKSIDE_PID_HISTORY_SIZE];
> -     derivative /= backside_params.interval;
> -     deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
> -     DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -     sum += deriv_p;
> -
> -     /* Calculate the proportional term */
> -     prop_p = ((s64)backside_params.G_p) * 
> (s64)(state->error_history[state->cur_sample]);
> -     DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -     sum += prop_p;
> -
> -     /* Scale sum */
> -     sum >>= 36;
> -
> -     DBG("   sum: %d\n", (int)sum);
> -     if (backside_params.additive)
> -             state->pwm += (s32)sum;
> -     else
> -             state->pwm = sum;
> -
> -     /* Check for clamp */
> -     fan_min = (dimm_output_clamp * 100) / 14000;
> -     fan_min = max(fan_min, backside_params.output_min);
> -
> -     state->pwm = max(state->pwm, fan_min);
> -     state->pwm = min(state->pwm, backside_params.output_max);
> -
> -     DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
> -     set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
> -}
> -
> -/*
> - * Initialize the state structure for the backside fan control loop
> - */
> -static int init_backside_state(struct backside_pid_state *state)
> -{
> -     struct device_node *u3;
> -     int u3h = 1; /* conservative by default */
> -     int err;
> -
> -     /*
> -      * There are different PID params for machines with U3 and machines
> -      * with U3H, pick the right ones now
> -      */
> -     u3 = of_find_node_by_path("/u3@0,f8000000");
> -     if (u3 != NULL) {
> -             const u32 *vers = of_get_property(u3, "device-rev", NULL);
> -             if (vers)
> -                     if (((*vers) & 0x3f) < 0x34)
> -                             u3h = 0;
> -             of_node_put(u3);
> -     }
> -
> -     if (rackmac) {
> -             backside_params.G_d = BACKSIDE_PID_RACK_G_d;
> -             backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
> -             backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
> -             backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
> -             backside_params.G_p = BACKSIDE_PID_RACK_G_p;
> -             backside_params.G_r = BACKSIDE_PID_G_r;
> -             backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
> -             backside_params.additive = 0;
> -     } else if (u3h) {
> -             backside_params.G_d = BACKSIDE_PID_U3H_G_d;
> -             backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
> -             backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
> -             backside_params.interval = BACKSIDE_PID_INTERVAL;
> -             backside_params.G_p = BACKSIDE_PID_G_p;
> -             backside_params.G_r = BACKSIDE_PID_G_r;
> -             backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
> -             backside_params.additive = 1;
> -     } else {
> -             backside_params.G_d = BACKSIDE_PID_U3_G_d;
> -             backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
> -             backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
> -             backside_params.interval = BACKSIDE_PID_INTERVAL;
> -             backside_params.G_p = BACKSIDE_PID_G_p;
> -             backside_params.G_r = BACKSIDE_PID_G_r;
> -             backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
> -             backside_params.additive = 1;
> -     }
> -
> -     state->ticks = 1;
> -     state->first = 1;
> -     state->pwm = 50;
> -
> -     state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
> -     if (state->monitor == NULL)
> -             return -ENODEV;
> -
> -     err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
> -     err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
> -     if (err)
> -             printk(KERN_WARNING "Failed to create attribute file(s)"
> -                     " for backside fan\n");
> -
> -     return 0;
> -}
> -
> -/*
> - * Dispose of the state data for the backside control loop
> - */
> -static void dispose_backside_state(struct backside_pid_state *state)
> -{
> -     if (state->monitor == NULL)
> -             return;
> -
> -     device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
> -     device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
> -
> -     state->monitor = NULL;
> -}
> - 
> -/*
> - * Drives bay fan control loop
> - */
> -static void do_monitor_drives(struct drives_pid_state *state)
> -{
> -     s32 temp, integral, derivative;
> -     s64 integ_p, deriv_p, prop_p, sum; 
> -     int i, rc;
> -
> -     if (--state->ticks != 0)
> -             return;
> -     state->ticks = DRIVES_PID_INTERVAL;
> -
> -     DBG("drives:\n");
> -
> -     /* Check fan status */
> -     rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
> -     if (rc < 0) {
> -             printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
> -             /* XXX What do we do now ? */
> -     } else
> -             state->rpm = rc;
> -     DBG("  current rpm: %d\n", state->rpm);
> -
> -     /* Get some sensor readings */
> -     temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
> -                                                 DS1775_TEMP)) << 8;
> -     state->last_temp = temp;
> -     DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
> -         FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
> -
> -     /* Store temperature and error in history array */
> -     state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
> -     state->sample_history[state->cur_sample] = temp;
> -     state->error_history[state->cur_sample] = temp - 
> DRIVES_PID_INPUT_TARGET;
> -     
> -     /* If first loop, fill the history table */
> -     if (state->first) {
> -             for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
> -                     state->cur_sample = (state->cur_sample + 1) %
> -                             DRIVES_PID_HISTORY_SIZE;
> -                     state->sample_history[state->cur_sample] = temp;
> -                     state->error_history[state->cur_sample] =
> -                             temp - DRIVES_PID_INPUT_TARGET;
> -             }
> -             state->first = 0;
> -     }
> -
> -     /* Calculate the integral term */
> -     sum = 0;
> -     integral = 0;
> -     for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
> -             integral += state->error_history[i];
> -     integral *= DRIVES_PID_INTERVAL;
> -     DBG("  integral: %08x\n", integral);
> -     integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
> -     DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -     sum += integ_p;
> -
> -     /* Calculate the derivative term */
> -     derivative = state->error_history[state->cur_sample] -
> -             state->error_history[(state->cur_sample + 
> DRIVES_PID_HISTORY_SIZE - 1)
> -                                 % DRIVES_PID_HISTORY_SIZE];
> -     derivative /= DRIVES_PID_INTERVAL;
> -     deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
> -     DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -     sum += deriv_p;
> -
> -     /* Calculate the proportional term */
> -     prop_p = ((s64)DRIVES_PID_G_p) * 
> (s64)(state->error_history[state->cur_sample]);
> -     DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -     sum += prop_p;
> -
> -     /* Scale sum */
> -     sum >>= 36;
> -
> -     DBG("   sum: %d\n", (int)sum);
> -     state->rpm += (s32)sum;
> -
> -     state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
> -     state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
> -
> -     DBG("** DRIVES RPM: %d\n", (int)state->rpm);
> -     set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
> -}
> -
> -/*
> - * Initialize the state structure for the drives bay fan control loop
> - */
> -static int init_drives_state(struct drives_pid_state *state)
> -{
> -     int err;
> -
> -     state->ticks = 1;
> -     state->first = 1;
> -     state->rpm = 1000;
> -
> -     state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
> -     if (state->monitor == NULL)
> -             return -ENODEV;
> -
> -     err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
> -     err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
> -     if (err)
> -             printk(KERN_WARNING "Failed to create attribute file(s)"
> -                     " for drives bay fan\n");
> -
> -     return 0;
> -}
> -
> -/*
> - * Dispose of the state data for the drives control loop
> - */
> -static void dispose_drives_state(struct drives_pid_state *state)
> -{
> -     if (state->monitor == NULL)
> -             return;
> -
> -     device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
> -     device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
> -
> -     state->monitor = NULL;
> -}
> -
> -/*
> - * DIMMs temp control loop
> - */
> -static void do_monitor_dimms(struct dimm_pid_state *state)
> -{
> -     s32 temp, integral, derivative, fan_min;
> -     s64 integ_p, deriv_p, prop_p, sum;
> -     int i;
> -
> -     if (--state->ticks != 0)
> -             return;
> -     state->ticks = DIMM_PID_INTERVAL;
> -
> -     DBG("DIMM:\n");
> -
> -     DBG("  current value: %d\n", state->output);
> -
> -     temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
> -     if (temp < 0)
> -             return;
> -     temp <<= 16;
> -     state->last_temp = temp;
> -     DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
> -         FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
> -
> -     /* Store temperature and error in history array */
> -     state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
> -     state->sample_history[state->cur_sample] = temp;
> -     state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
> -
> -     /* If first loop, fill the history table */
> -     if (state->first) {
> -             for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
> -                     state->cur_sample = (state->cur_sample + 1) %
> -                             DIMM_PID_HISTORY_SIZE;
> -                     state->sample_history[state->cur_sample] = temp;
> -                     state->error_history[state->cur_sample] =
> -                             temp - DIMM_PID_INPUT_TARGET;
> -             }
> -             state->first = 0;
> -     }
> -
> -     /* Calculate the integral term */
> -     sum = 0;
> -     integral = 0;
> -     for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
> -             integral += state->error_history[i];
> -     integral *= DIMM_PID_INTERVAL;
> -     DBG("  integral: %08x\n", integral);
> -     integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
> -     DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -     sum += integ_p;
> -
> -     /* Calculate the derivative term */
> -     derivative = state->error_history[state->cur_sample] -
> -             state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE 
> - 1)
> -                                 % DIMM_PID_HISTORY_SIZE];
> -     derivative /= DIMM_PID_INTERVAL;
> -     deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
> -     DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -     sum += deriv_p;
> -
> -     /* Calculate the proportional term */
> -     prop_p = ((s64)DIMM_PID_G_p) * 
> (s64)(state->error_history[state->cur_sample]);
> -     DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -     sum += prop_p;
> -
> -     /* Scale sum */
> -     sum >>= 36;
> -
> -     DBG("   sum: %d\n", (int)sum);
> -     state->output = (s32)sum;
> -     state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
> -     state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
> -     dimm_output_clamp = state->output;
> -
> -     DBG("** DIMM clamp value: %d\n", (int)state->output);
> -
> -     /* Backside PID is only every 5 seconds, force backside fan clamping 
> now */
> -     fan_min = (dimm_output_clamp * 100) / 14000;
> -     fan_min = max(fan_min, backside_params.output_min);
> -     if (backside_state.pwm < fan_min) {
> -             backside_state.pwm = fan_min;
> -             DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
> -             set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
> -     }
> -}
> -
> -/*
> - * Initialize the state structure for the DIMM temp control loop
> - */
> -static int init_dimms_state(struct dimm_pid_state *state)
> -{
> -     state->ticks = 1;
> -     state->first = 1;
> -     state->output = 4000;
> -
> -     state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
> -     if (state->monitor == NULL)
> -             return -ENODEV;
> -
> -     if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
> -             printk(KERN_WARNING "Failed to create attribute file"
> -                     " for DIMM temperature\n");
> -
> -     return 0;
> -}
> -
> -/*
> - * Dispose of the state data for the DIMM control loop
> - */
> -static void dispose_dimms_state(struct dimm_pid_state *state)
> -{
> -     if (state->monitor == NULL)
> -             return;
> -
> -     device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
> -
> -     state->monitor = NULL;
> -}
> -
> -/*
> - * Slots fan control loop
> - */
> -static void do_monitor_slots(struct slots_pid_state *state)
> -{
> -     s32 temp, integral, derivative;
> -     s64 integ_p, deriv_p, prop_p, sum;
> -     int i, rc;
> -
> -     if (--state->ticks != 0)
> -             return;
> -     state->ticks = SLOTS_PID_INTERVAL;
> -
> -     DBG("slots:\n");
> -
> -     /* Check fan status */
> -     rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
> -     if (rc < 0) {
> -             printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
> -             /* XXX What do we do now ? */
> -     } else
> -             state->pwm = rc;
> -     DBG("  current pwm: %d\n", state->pwm);
> -
> -     /* Get some sensor readings */
> -     temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
> -                                                 DS1775_TEMP)) << 8;
> -     state->last_temp = temp;
> -     DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
> -         FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
> -
> -     /* Store temperature and error in history array */
> -     state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
> -     state->sample_history[state->cur_sample] = temp;
> -     state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
> -
> -     /* If first loop, fill the history table */
> -     if (state->first) {
> -             for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
> -                     state->cur_sample = (state->cur_sample + 1) %
> -                             SLOTS_PID_HISTORY_SIZE;
> -                     state->sample_history[state->cur_sample] = temp;
> -                     state->error_history[state->cur_sample] =
> -                             temp - SLOTS_PID_INPUT_TARGET;
> -             }
> -             state->first = 0;
> -     }
> -
> -     /* Calculate the integral term */
> -     sum = 0;
> -     integral = 0;
> -     for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
> -             integral += state->error_history[i];
> -     integral *= SLOTS_PID_INTERVAL;
> -     DBG("  integral: %08x\n", integral);
> -     integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
> -     DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -     sum += integ_p;
> -
> -     /* Calculate the derivative term */
> -     derivative = state->error_history[state->cur_sample] -
> -             state->error_history[(state->cur_sample + 
> SLOTS_PID_HISTORY_SIZE - 1)
> -                                 % SLOTS_PID_HISTORY_SIZE];
> -     derivative /= SLOTS_PID_INTERVAL;
> -     deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
> -     DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -     sum += deriv_p;
> -
> -     /* Calculate the proportional term */
> -     prop_p = ((s64)SLOTS_PID_G_p) * 
> (s64)(state->error_history[state->cur_sample]);
> -     DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -     sum += prop_p;
> -
> -     /* Scale sum */
> -     sum >>= 36;
> -
> -     DBG("   sum: %d\n", (int)sum);
> -     state->pwm = (s32)sum;
> -
> -     state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
> -     state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
> -
> -     DBG("** DRIVES PWM: %d\n", (int)state->pwm);
> -     set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
> -}
> -
> -/*
> - * Initialize the state structure for the slots bay fan control loop
> - */
> -static int init_slots_state(struct slots_pid_state *state)
> -{
> -     int err;
> -
> -     state->ticks = 1;
> -     state->first = 1;
> -     state->pwm = 50;
> -
> -     state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
> -     if (state->monitor == NULL)
> -             return -ENODEV;
> -
> -     err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
> -     err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
> -     if (err)
> -             printk(KERN_WARNING "Failed to create attribute file(s)"
> -                     " for slots bay fan\n");
> -
> -     return 0;
> -}
> -
> -/*
> - * Dispose of the state data for the slots control loop
> - */
> -static void dispose_slots_state(struct slots_pid_state *state)
> -{
> -     if (state->monitor == NULL)
> -             return;
> -
> -     device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
> -     device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
> -
> -     state->monitor = NULL;
> -}
> -
> -
> -static int call_critical_overtemp(void)
> -{
> -     char *argv[] = { critical_overtemp_path, NULL };
> -     static char *envp[] = { "HOME=/",
> -                             "TERM=linux",
> -                             "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
> -                             NULL };
> -
> -     return call_usermodehelper(critical_overtemp_path,
> -                                argv, envp, UMH_WAIT_EXEC);
> -}
> -
> -
> -/*
> - * Here's the kernel thread that calls the various control loops
> - */
> -static int main_control_loop(void *x)
> -{
> -     DBG("main_control_loop started\n");
> -
> -     mutex_lock(&driver_lock);
> -
> -     if (start_fcu() < 0) {
> -             printk(KERN_ERR "kfand: failed to start FCU\n");
> -             mutex_unlock(&driver_lock);
> -             goto out;
> -     }
> -
> -     /* Set the PCI fan once for now on non-RackMac */
> -     if (!rackmac)
> -             set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
> -
> -     /* Initialize ADCs */
> -     initialize_adc(&processor_state[0]);
> -     if (processor_state[1].monitor != NULL)
> -             initialize_adc(&processor_state[1]);
> -
> -     fcu_tickle_ticks = FCU_TICKLE_TICKS;
> -
> -     mutex_unlock(&driver_lock);
> -
> -     while (state == state_attached) {
> -             unsigned long elapsed, start;
> -
> -             start = jiffies;
> -
> -             mutex_lock(&driver_lock);
> -
> -             /* Tickle the FCU just in case */
> -             if (--fcu_tickle_ticks < 0) {
> -                     fcu_tickle_ticks = FCU_TICKLE_TICKS;
> -                     tickle_fcu();
> -             }
> -
> -             /* First, we always calculate the new DIMMs state on an Xserve 
> */
> -             if (rackmac)
> -                     do_monitor_dimms(&dimms_state);
> -
> -             /* Then, the CPUs */
> -             if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
> -                     do_monitor_cpu_combined();
> -             else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
> -                     do_monitor_cpu_rack(&processor_state[0]);
> -                     if (processor_state[1].monitor != NULL)
> -                             do_monitor_cpu_rack(&processor_state[1]);
> -                     // better deal with UP
> -             } else {
> -                     do_monitor_cpu_split(&processor_state[0]);
> -                     if (processor_state[1].monitor != NULL)
> -                             do_monitor_cpu_split(&processor_state[1]);
> -                     // better deal with UP
> -             }
> -             /* Then, the rest */
> -             do_monitor_backside(&backside_state);
> -             if (rackmac)
> -                     do_monitor_slots(&slots_state);
> -             else
> -                     do_monitor_drives(&drives_state);
> -             mutex_unlock(&driver_lock);
> -
> -             if (critical_state == 1) {
> -                     printk(KERN_WARNING "Temperature control detected a 
> critical condition\n");
> -                     printk(KERN_WARNING "Attempting to shut down...\n");
> -                     if (call_critical_overtemp()) {
> -                             printk(KERN_WARNING "Can't call %s, power off 
> now!\n",
> -                                    critical_overtemp_path);
> -                             machine_power_off();
> -                     }
> -             }
> -             if (critical_state > 0)
> -                     critical_state++;
> -             if (critical_state > MAX_CRITICAL_STATE) {
> -                     printk(KERN_WARNING "Shutdown timed out, power off now 
> !\n");
> -                     machine_power_off();
> -             }
> -
> -             // FIXME: Deal with signals
> -             elapsed = jiffies - start;
> -             if (elapsed < HZ)
> -                     schedule_timeout_interruptible(HZ - elapsed);
> -     }
> -
> - out:
> -     DBG("main_control_loop ended\n");
> -
> -     ctrl_task = 0;
> -     complete_and_exit(&ctrl_complete, 0);
> -}
> -
> -/*
> - * Dispose the control loops when tearing down
> - */
> -static void dispose_control_loops(void)
> -{
> -     dispose_processor_state(&processor_state[0]);
> -     dispose_processor_state(&processor_state[1]);
> -     dispose_backside_state(&backside_state);
> -     dispose_drives_state(&drives_state);
> -     dispose_slots_state(&slots_state);
> -     dispose_dimms_state(&dimms_state);
> -}
> -
> -/*
> - * Create the control loops. U3-0 i2c bus is up, so we can now
> - * get to the various sensors
> - */
> -static int create_control_loops(void)
> -{
> -     struct device_node *np;
> -
> -     /* Count CPUs from the device-tree, we don't care how many are
> -      * actually used by Linux
> -      */
> -     cpu_count = 0;
> -     for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
> -             cpu_count++;
> -
> -     DBG("counted %d CPUs in the device-tree\n", cpu_count);
> -
> -     /* Decide the type of PID algorithm to use based on the presence of
> -      * the pumps, though that may not be the best way, that is good enough
> -      * for now
> -      */
> -     if (rackmac)
> -             cpu_pid_type = CPU_PID_TYPE_RACKMAC;
> -     else if (of_machine_is_compatible("PowerMac7,3")
> -         && (cpu_count > 1)
> -         && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
> -         && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
> -             printk(KERN_INFO "Liquid cooling pumps detected, using new 
> algorithm !\n");
> -             cpu_pid_type = CPU_PID_TYPE_COMBINED;
> -     } else
> -             cpu_pid_type = CPU_PID_TYPE_SPLIT;
> -
> -     /* Create control loops for everything. If any fail, everything
> -      * fails
> -      */
> -     if (init_processor_state(&processor_state[0], 0))
> -             goto fail;
> -     if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
> -             fetch_cpu_pumps_minmax();
> -
> -     if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
> -             goto fail;
> -     if (init_backside_state(&backside_state))
> -             goto fail;
> -     if (rackmac && init_dimms_state(&dimms_state))
> -             goto fail;
> -     if (rackmac && init_slots_state(&slots_state))
> -             goto fail;
> -     if (!rackmac && init_drives_state(&drives_state))
> -             goto fail;
> -
> -     DBG("all control loops up !\n");
> -
> -     return 0;
> -     
> - fail:
> -     DBG("failure creating control loops, disposing\n");
> -
> -     dispose_control_loops();
> -
> -     return -ENODEV;
> -}
> -
> -/*
> - * Start the control loops after everything is up, that is create
> - * the thread that will make them run
> - */
> -static void start_control_loops(void)
> -{
> -     init_completion(&ctrl_complete);
> -
> -     ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
> -}
> -
> -/*
> - * Stop the control loops when tearing down
> - */
> -static void stop_control_loops(void)
> -{
> -     if (ctrl_task)
> -             wait_for_completion(&ctrl_complete);
> -}
> -
> -/*
> - * Attach to the i2c FCU after detecting U3-1 bus
> - */
> -static int attach_fcu(void)
> -{
> -     fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
> -     if (fcu == NULL)
> -             return -ENODEV;
> -
> -     DBG("FCU attached\n");
> -
> -     return 0;
> -}
> -
> -/*
> - * Detach from the i2c FCU when tearing down
> - */
> -static void detach_fcu(void)
> -{
> -     fcu = NULL;
> -}
> -
> -/*
> - * Attach to the i2c controller. We probe the various chips based
> - * on the device-tree nodes and build everything for the driver to
> - * run, we then kick the driver monitoring thread
> - */
> -static int therm_pm72_attach(struct i2c_adapter *adapter)
> -{
> -     mutex_lock(&driver_lock);
> -
> -     /* Check state */
> -     if (state == state_detached)
> -             state = state_attaching;
> -     if (state != state_attaching) {
> -             mutex_unlock(&driver_lock);
> -             return 0;
> -     }
> -
> -     /* Check if we are looking for one of these */
> -     if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
> -             u3_0 = adapter;
> -             DBG("found U3-0\n");
> -             if (k2 || !rackmac)
> -                     if (create_control_loops())
> -                             u3_0 = NULL;
> -     } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
> -             u3_1 = adapter;
> -             DBG("found U3-1, attaching FCU\n");
> -             if (attach_fcu())
> -                     u3_1 = NULL;
> -     } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
> -             k2 = adapter;
> -             DBG("Found K2\n");
> -             if (u3_0 && rackmac)
> -                     if (create_control_loops())
> -                             k2 = NULL;
> -     }
> -     /* We got all we need, start control loops */
> -     if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
> -             DBG("everything up, starting control loops\n");
> -             state = state_attached;
> -             start_control_loops();
> -     }
> -     mutex_unlock(&driver_lock);
> -
> -     return 0;
> -}
> -
> -static int therm_pm72_probe(struct i2c_client *client,
> -                         const struct i2c_device_id *id)
> -{
> -     /* Always succeed, the real work was done in therm_pm72_attach() */
> -     return 0;
> -}
> -
> -/*
> - * Called when any of the devices which participates into thermal management
> - * is going away.
> - */
> -static int therm_pm72_remove(struct i2c_client *client)
> -{
> -     struct i2c_adapter *adapter = client->adapter;
> -
> -     mutex_lock(&driver_lock);
> -
> -     if (state != state_detached)
> -             state = state_detaching;
> -
> -     /* Stop control loops if any */
> -     DBG("stopping control loops\n");
> -     mutex_unlock(&driver_lock);
> -     stop_control_loops();
> -     mutex_lock(&driver_lock);
> -
> -     if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
> -             DBG("lost U3-0, disposing control loops\n");
> -             dispose_control_loops();
> -             u3_0 = NULL;
> -     }
> -     
> -     if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
> -             DBG("lost U3-1, detaching FCU\n");
> -             detach_fcu();
> -             u3_1 = NULL;
> -     }
> -     if (u3_0 == NULL && u3_1 == NULL)
> -             state = state_detached;
> -
> -     mutex_unlock(&driver_lock);
> -
> -     return 0;
> -}
> -
> -/*
> - * i2c_driver structure to attach to the host i2c controller
> - */
> -
> -static const struct i2c_device_id therm_pm72_id[] = {
> -     /*
> -      * Fake device name, thermal management is done by several
> -      * chips but we don't need to differentiate between them at
> -      * this point.
> -      */
> -     { "therm_pm72", 0 },
> -     { }
> -};
> -
> -static struct i2c_driver therm_pm72_driver = {
> -     .driver = {
> -             .name   = "therm_pm72",
> -     },
> -     .attach_adapter = therm_pm72_attach,
> -     .probe          = therm_pm72_probe,
> -     .remove         = therm_pm72_remove,
> -     .id_table       = therm_pm72_id,
> -};
> -
> -static int fan_check_loc_match(const char *loc, int fan)
> -{
> -     char    tmp[64];
> -     char    *c, *e;
> -
> -     strlcpy(tmp, fcu_fans[fan].loc, 64);
> -
> -     c = tmp;
> -     for (;;) {
> -             e = strchr(c, ',');
> -             if (e)
> -                     *e = 0;
> -             if (strcmp(loc, c) == 0)
> -                     return 1;
> -             if (e == NULL)
> -                     break;
> -             c = e + 1;
> -     }
> -     return 0;
> -}
> -
> -static void fcu_lookup_fans(struct device_node *fcu_node)
> -{
> -     struct device_node *np = NULL;
> -     int i;
> -
> -     /* The table is filled by default with values that are suitable
> -      * for the old machines without device-tree informations. We scan
> -      * the device-tree and override those values with whatever is
> -      * there
> -      */
> -
> -     DBG("Looking up FCU controls in device-tree...\n");
> -
> -     while ((np = of_get_next_child(fcu_node, np)) != NULL) {
> -             int type = -1;
> -             const char *loc;
> -             const u32 *reg;
> -
> -             DBG(" control: %s, type: %s\n", np->name, np->type);
> -
> -             /* Detect control type */
> -             if (!strcmp(np->type, "fan-rpm-control") ||
> -                 !strcmp(np->type, "fan-rpm"))
> -                     type = FCU_FAN_RPM;
> -             if (!strcmp(np->type, "fan-pwm-control") ||
> -                 !strcmp(np->type, "fan-pwm"))
> -                     type = FCU_FAN_PWM;
> -             /* Only care about fans for now */
> -             if (type == -1)
> -                     continue;
> -
> -             /* Lookup for a matching location */
> -             loc = of_get_property(np, "location", NULL);
> -             reg = of_get_property(np, "reg", NULL);
> -             if (loc == NULL || reg == NULL)
> -                     continue;
> -             DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
> -
> -             for (i = 0; i < FCU_FAN_COUNT; i++) {
> -                     int fan_id;
> -
> -                     if (!fan_check_loc_match(loc, i))
> -                             continue;
> -                     DBG(" location match, index: %d\n", i);
> -                     fcu_fans[i].id = FCU_FAN_ABSENT_ID;
> -                     if (type != fcu_fans[i].type) {
> -                             printk(KERN_WARNING "therm_pm72: Fan type 
> mismatch "
> -                                    "in device-tree for %s\n", 
> np->full_name);
> -                             break;
> -                     }
> -                     if (type == FCU_FAN_RPM)
> -                             fan_id = ((*reg) - 0x10) / 2;
> -                     else
> -                             fan_id = ((*reg) - 0x30) / 2;
> -                     if (fan_id > 7) {
> -                             printk(KERN_WARNING "therm_pm72: Can't parse "
> -                                    "fan ID in device-tree for %s\n", 
> np->full_name);
> -                             break;
> -                     }
> -                     DBG(" fan id -> %d, type -> %d\n", fan_id, type);
> -                     fcu_fans[i].id = fan_id;
> -             }
> -     }
> -
> -     /* Now dump the array */
> -     printk(KERN_INFO "Detected fan controls:\n");
> -     for (i = 0; i < FCU_FAN_COUNT; i++) {
> -             if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
> -                     continue;
> -             printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
> -                    fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
> -                    fcu_fans[i].id, fcu_fans[i].loc);
> -     }
> -}
> -
> -static int fcu_of_probe(struct platform_device* dev)
> -{
> -     state = state_detached;
> -     of_dev = dev;
> -
> -     dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
> -
> -     /* Lookup the fans in the device tree */
> -     fcu_lookup_fans(dev->dev.of_node);
> -
> -     /* Add the driver */
> -     return i2c_add_driver(&therm_pm72_driver);
> -}
> -
> -static int fcu_of_remove(struct platform_device* dev)
> -{
> -     i2c_del_driver(&therm_pm72_driver);
> -
> -     return 0;
> -}
> -
> -static const struct of_device_id fcu_match[] = 
> -{
> -     {
> -     .type           = "fcu",
> -     },
> -     {},
> -};
> -MODULE_DEVICE_TABLE(of, fcu_match);
> -
> -static struct platform_driver fcu_of_platform_driver = 
> -{
> -     .driver = {
> -             .name = "temperature",
> -             .owner = THIS_MODULE,
> -             .of_match_table = fcu_match,
> -     },
> -     .probe          = fcu_of_probe,
> -     .remove         = fcu_of_remove
> -};
> -
> -/*
> - * Check machine type, attach to i2c controller
> - */
> -static int __init therm_pm72_init(void)
> -{
> -     rackmac = of_machine_is_compatible("RackMac3,1");
> -
> -     if (!of_machine_is_compatible("PowerMac7,2") &&
> -         !of_machine_is_compatible("PowerMac7,3") &&
> -         !rackmac)
> -             return -ENODEV;
> -
> -     return platform_driver_register(&fcu_of_platform_driver);
> -}
> -
> -static void __exit therm_pm72_exit(void)
> -{
> -     platform_driver_unregister(&fcu_of_platform_driver);
> -}
> -
> -module_init(therm_pm72_init);
> -module_exit(therm_pm72_exit);
> -
> -MODULE_AUTHOR("Benjamin Herrenschmidt <b...@kernel.crashing.org>");
> -MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
> -MODULE_LICENSE("GPL");
> -
> diff --git a/drivers/macintosh/therm_pm72.h b/drivers/macintosh/therm_pm72.h
> deleted file mode 100644
> index df3680e2a22f..000000000000
> --- a/drivers/macintosh/therm_pm72.h
> +++ /dev/null
> @@ -1,326 +0,0 @@
> -#ifndef __THERM_PMAC_7_2_H__
> -#define __THERM_PMAC_7_2_H__
> -
> -typedef unsigned short fu16;
> -typedef int fs32;
> -typedef short fs16;
> -
> -struct mpu_data
> -{
> -     u8      signature;              /* 0x00 - EEPROM sig. */
> -     u8      bytes_used;             /* 0x01 - Bytes used in eeprom (160 ?) 
> */
> -     u8      size;                   /* 0x02 - EEPROM size (256 ?) */
> -     u8      version;                /* 0x03 - EEPROM version */
> -     u32     data_revision;          /* 0x04 - Dataset revision */
> -     u8      processor_bin_code[3];  /* 0x08 - Processor BIN code */
> -     u8      bin_code_expansion;     /* 0x0b - ??? (padding ?) */
> -     u8      processor_num;          /* 0x0c - Number of CPUs on this MPU */
> -     u8      input_mul_bus_div;      /* 0x0d - Clock input multiplier/bus 
> divider */
> -     u8      reserved1[2];           /* 0x0e - */
> -     u32     input_clk_freq_high;    /* 0x10 - Input clock frequency high */
> -     u8      cpu_nb_target_cycles;   /* 0x14 - ??? */
> -     u8      cpu_statlat;            /* 0x15 - ??? */
> -     u8      cpu_snooplat;           /* 0x16 - ??? */
> -     u8      cpu_snoopacc;           /* 0x17 - ??? */
> -     u8      nb_paamwin;             /* 0x18 - ??? */
> -     u8      nb_statlat;             /* 0x19 - ??? */
> -     u8      nb_snooplat;            /* 0x1a - ??? */
> -     u8      nb_snoopwin;            /* 0x1b - ??? */
> -     u8      api_bus_mode;           /* 0x1c - ??? */
> -     u8      reserved2[3];           /* 0x1d - */
> -     u32     input_clk_freq_low;     /* 0x20 - Input clock frequency low */
> -     u8      processor_card_slot;    /* 0x24 - Processor card slot number */
> -     u8      reserved3[2];           /* 0x25 - */
> -     u8      padjmax;                /* 0x27 - Max power adjustment (Not in 
> OF!) */
> -     u8      ttarget;                /* 0x28 - Target temperature */
> -     u8      tmax;                   /* 0x29 - Max temperature */
> -     u8      pmaxh;                  /* 0x2a - Max power */
> -     u8      tguardband;             /* 0x2b - Guardband temp ??? Hist. len 
> in OSX */
> -     fs32    pid_gp;                 /* 0x2c - PID proportional gain */
> -     fs32    pid_gr;                 /* 0x30 - PID reset gain */
> -     fs32    pid_gd;                 /* 0x34 - PID derivative gain */
> -     fu16    voph;                   /* 0x38 - Vop High */
> -     fu16    vopl;                   /* 0x3a - Vop Low */
> -     fs16    nactual_die;            /* 0x3c - nActual Die */
> -     fs16    nactual_heatsink;       /* 0x3e - nActual Heatsink */
> -     fs16    nactual_system;         /* 0x40 - nActual System */
> -     u16     calibration_flags;      /* 0x42 - Calibration flags */
> -     fu16    mdiode;                 /* 0x44 - Diode M value (scaling 
> factor) */
> -     fs16    bdiode;                 /* 0x46 - Diode B value (offset) */
> -     fs32    theta_heat_sink;        /* 0x48 - Theta heat sink */
> -     u16     rminn_intake_fan;       /* 0x4c - Intake fan min RPM */
> -     u16     rmaxn_intake_fan;       /* 0x4e - Intake fan max RPM */
> -     u16     rminn_exhaust_fan;      /* 0x50 - Exhaust fan min RPM */
> -     u16     rmaxn_exhaust_fan;      /* 0x52 - Exhaust fan max RPM */
> -     u8      processor_part_num[8];  /* 0x54 - Processor part number XX 
> pumps min/max */
> -     u32     processor_lot_num;      /* 0x5c - Processor lot number */
> -     u8      orig_card_sernum[0x10]; /* 0x60 - Card original serial number */
> -     u8      curr_card_sernum[0x10]; /* 0x70 - Card current serial number */
> -     u8      mlb_sernum[0x18];       /* 0x80 - MLB serial number */
> -     u32     checksum1;              /* 0x98 - */
> -     u32     checksum2;              /* 0x9c - */    
> -}; /* Total size = 0xa0 */
> -
> -/* Display a 16.16 fixed point value */
> -#define FIX32TOPRINT(f)      ((f) >> 16),((((f) & 0xffff) * 1000) >> 16)
> -
> -/*
> - * Maximum number of seconds to be in critical state (after a
> - * normal shutdown attempt). If the machine isn't down after
> - * this counter elapses, we force an immediate machine power
> - * off.
> - */
> -#define MAX_CRITICAL_STATE                   30
> -static char * critical_overtemp_path = "/sbin/critical_overtemp";
> -
> -/*
> - * This option is "weird" :) Basically, if you define this to 1
> - * the control loop for the RPMs fans (not PWMs) will apply the
> - * correction factor obtained from the PID to the _actual_ RPM
> - * speed read from the FCU.
> - * If you define the below constant to 0, then it will be
> - * applied to the setpoint RPM speed, that is basically the
> - * speed we proviously "asked" for.
> - *
> - * I'm not sure which of these Apple's algorithm is supposed
> - * to use
> - */
> -#define RPM_PID_USE_ACTUAL_SPEED             0
> -
> -/*
> - * i2c IDs. Currently, we hard code those and assume that
> - * the FCU is on U3 bus 1 while all sensors are on U3 bus
> - * 0. This appear to be safe enough for this first version
> - * of the driver, though I would accept any clean patch
> - * doing a better use of the device-tree without turning the
> - * while i2c registration mechanism into a racy mess
> - *
> - * Note: Xserve changed this. We have some bits on the K2 bus,
> - * which I arbitrarily set to 0x200. Ultimately, we really want
> - * too lookup these in the device-tree though
> - */
> -#define FAN_CTRLER_ID                0x15e
> -#define SUPPLY_MONITOR_ID            0x58
> -#define SUPPLY_MONITORB_ID           0x5a
> -#define DRIVES_DALLAS_ID     0x94
> -#define BACKSIDE_MAX_ID              0x98
> -#define XSERVE_DIMMS_LM87    0x25a
> -#define XSERVE_SLOTS_LM75    0x290
> -
> -/*
> - * Some MAX6690, DS1775, LM87 register definitions
> - */
> -#define MAX6690_INT_TEMP     0
> -#define MAX6690_EXT_TEMP     1
> -#define DS1775_TEMP          0
> -#define LM87_INT_TEMP                0x27
> -
> -/*
> - * Scaling factors for the AD7417 ADC converters (except
> - * for the CPU diode which is obtained from the EEPROM).
> - * Those values are obtained from the property list of
> - * the darwin driver
> - */
> -#define ADC_12V_CURRENT_SCALE        0x0320  /* _AD2 */
> -#define ADC_CPU_VOLTAGE_SCALE        0x00a0  /* _AD3 */
> -#define ADC_CPU_CURRENT_SCALE        0x1f40  /* _AD4 */
> -
> -/*
> - * PID factors for the U3/Backside fan control loop. We have 2 sets
> - * of values here, one set for U3 and one set for U3H
> - */
> -#define BACKSIDE_FAN_PWM_DEFAULT_ID  1
> -#define BACKSIDE_FAN_PWM_INDEX               0
> -#define BACKSIDE_PID_U3_G_d          0x02800000
> -#define BACKSIDE_PID_U3H_G_d         0x01400000
> -#define BACKSIDE_PID_RACK_G_d                0x00500000
> -#define BACKSIDE_PID_G_p             0x00500000
> -#define BACKSIDE_PID_RACK_G_p                0x0004cccc
> -#define BACKSIDE_PID_G_r             0x00000000
> -#define BACKSIDE_PID_U3_INPUT_TARGET 0x00410000
> -#define BACKSIDE_PID_U3H_INPUT_TARGET        0x004b0000
> -#define BACKSIDE_PID_RACK_INPUT_TARGET       0x00460000
> -#define BACKSIDE_PID_INTERVAL                5
> -#define BACKSIDE_PID_RACK_INTERVAL   1
> -#define BACKSIDE_PID_OUTPUT_MAX              100
> -#define BACKSIDE_PID_U3_OUTPUT_MIN   20
> -#define BACKSIDE_PID_U3H_OUTPUT_MIN  20
> -#define BACKSIDE_PID_HISTORY_SIZE    2
> -
> -struct basckside_pid_params
> -{
> -     s32                     G_d;
> -     s32                     G_p;
> -     s32                     G_r;
> -     s32                     input_target;
> -     s32                     output_min;
> -     s32                     output_max;
> -     s32                     interval;
> -     int                     additive;
> -};
> -
> -struct backside_pid_state
> -{
> -     int                     ticks;
> -     struct i2c_client *     monitor;
> -     s32                     sample_history[BACKSIDE_PID_HISTORY_SIZE];
> -     s32                     error_history[BACKSIDE_PID_HISTORY_SIZE];
> -     int                     cur_sample;
> -     s32                     last_temp;
> -     int                     pwm;
> -     int                     first;
> -};
> -
> -/*
> - * PID factors for the Drive Bay fan control loop
> - */
> -#define DRIVES_FAN_RPM_DEFAULT_ID    2
> -#define DRIVES_FAN_RPM_INDEX         1
> -#define DRIVES_PID_G_d                       0x01e00000
> -#define DRIVES_PID_G_p                       0x00500000
> -#define DRIVES_PID_G_r                       0x00000000
> -#define DRIVES_PID_INPUT_TARGET              0x00280000
> -#define DRIVES_PID_INTERVAL                  5
> -#define DRIVES_PID_OUTPUT_MAX                4000
> -#define DRIVES_PID_OUTPUT_MIN                300
> -#define DRIVES_PID_HISTORY_SIZE              2
> -
> -struct drives_pid_state
> -{
> -     int                     ticks;
> -     struct i2c_client *     monitor;
> -     s32                     sample_history[BACKSIDE_PID_HISTORY_SIZE];
> -     s32                     error_history[BACKSIDE_PID_HISTORY_SIZE];
> -     int                     cur_sample;
> -     s32                     last_temp;
> -     int                     rpm;
> -     int                     first;
> -};
> -
> -#define SLOTS_FAN_PWM_DEFAULT_ID     2
> -#define SLOTS_FAN_PWM_INDEX          2
> -#define      SLOTS_FAN_DEFAULT_PWM           40 /* Do better here ! */
> -
> -
> -/*
> - * PID factors for the Xserve DIMM control loop
> - */
> -#define DIMM_PID_G_d                 0
> -#define DIMM_PID_G_p                 0
> -#define DIMM_PID_G_r                 0x06553600
> -#define DIMM_PID_INPUT_TARGET                3276800
> -#define DIMM_PID_INTERVAL                    1
> -#define DIMM_PID_OUTPUT_MAX          14000
> -#define DIMM_PID_OUTPUT_MIN          4000
> -#define DIMM_PID_HISTORY_SIZE                20
> -
> -struct dimm_pid_state
> -{
> -     int                     ticks;
> -     struct i2c_client *     monitor;
> -     s32                     sample_history[DIMM_PID_HISTORY_SIZE];
> -     s32                     error_history[DIMM_PID_HISTORY_SIZE];
> -     int                     cur_sample;
> -     s32                     last_temp;
> -     int                     first;
> -     int                     output;
> -};
> -
> -
> -/*
> - * PID factors for the Xserve Slots control loop
> - */
> -#define SLOTS_PID_G_d                        0
> -#define SLOTS_PID_G_p                        0
> -#define SLOTS_PID_G_r                        0x00100000
> -#define SLOTS_PID_INPUT_TARGET               3200000
> -#define SLOTS_PID_INTERVAL                   1
> -#define SLOTS_PID_OUTPUT_MAX         100
> -#define SLOTS_PID_OUTPUT_MIN         20
> -#define SLOTS_PID_HISTORY_SIZE               20
> -
> -struct slots_pid_state
> -{
> -     int                     ticks;
> -     struct i2c_client *     monitor;
> -     s32                     sample_history[SLOTS_PID_HISTORY_SIZE];
> -     s32                     error_history[SLOTS_PID_HISTORY_SIZE];
> -     int                     cur_sample;
> -     s32                     last_temp;
> -     int                     first;
> -     int                     pwm;
> -};
> -
> -
> -
> -/* Desktops */
> -
> -#define CPUA_INTAKE_FAN_RPM_DEFAULT_ID       3
> -#define CPUA_EXHAUST_FAN_RPM_DEFAULT_ID      4
> -#define CPUB_INTAKE_FAN_RPM_DEFAULT_ID       5
> -#define CPUB_EXHAUST_FAN_RPM_DEFAULT_ID      6
> -
> -#define CPUA_INTAKE_FAN_RPM_INDEX    3
> -#define CPUA_EXHAUST_FAN_RPM_INDEX   4
> -#define CPUB_INTAKE_FAN_RPM_INDEX    5
> -#define CPUB_EXHAUST_FAN_RPM_INDEX   6
> -
> -#define CPU_INTAKE_SCALE             0x0000f852
> -#define CPU_TEMP_HISTORY_SIZE                2
> -#define CPU_POWER_HISTORY_SIZE               10
> -#define CPU_PID_INTERVAL             1
> -#define CPU_MAX_OVERTEMP             90
> -
> -#define CPUA_PUMP_RPM_INDEX          7
> -#define CPUB_PUMP_RPM_INDEX          8
> -#define CPU_PUMP_OUTPUT_MAX          3200
> -#define CPU_PUMP_OUTPUT_MIN          1250
> -
> -/* Xserve */
> -#define CPU_A1_FAN_RPM_INDEX         9
> -#define CPU_A2_FAN_RPM_INDEX         10
> -#define CPU_A3_FAN_RPM_INDEX         11
> -#define CPU_B1_FAN_RPM_INDEX         12
> -#define CPU_B2_FAN_RPM_INDEX         13
> -#define CPU_B3_FAN_RPM_INDEX         14
> -
> -
> -struct cpu_pid_state
> -{
> -     int                     index;
> -     struct i2c_client *     monitor;
> -     struct mpu_data         mpu;
> -     int                     overtemp;
> -     s32                     temp_history[CPU_TEMP_HISTORY_SIZE];
> -     int                     cur_temp;
> -     s32                     power_history[CPU_POWER_HISTORY_SIZE];
> -     s32                     error_history[CPU_POWER_HISTORY_SIZE];
> -     int                     cur_power;
> -     int                     count_power;
> -     int                     rpm;
> -     int                     intake_rpm;
> -     s32                     voltage;
> -     s32                     current_a;
> -     s32                     last_temp;
> -     s32                     last_power;
> -     int                     first;
> -     u8                      adc_config;
> -     s32                     pump_min;
> -     s32                     pump_max;
> -};
> -
> -/* Tickle FCU every 10 seconds */
> -#define FCU_TICKLE_TICKS     10
> -
> -/*
> - * Driver state
> - */
> -enum {
> -     state_detached,
> -     state_attaching,
> -     state_attached,
> -     state_detaching,
> -};
> -
> -
> -#endif /* __THERM_PMAC_7_2_H__ */


_______________________________________________
Linuxppc-dev mailing list
Linuxppc-dev@lists.ozlabs.org
https://lists.ozlabs.org/listinfo/linuxppc-dev

Reply via email to