On Fri, 2018-06-29 at 17:34 +1000, Russell Currey wrote: > DMA pseudo-bypass is a new set of DMA operations that solve some issues for > devices that want to address more than 32 bits but can't address the 59 > bits required to enable direct DMA.
One thing you may need to add (I didn't see it with a cursory glance but maybe it's there) is some form of handling of allocations or mapping requests that span a TCE boundary. For allocations, since they are page orders, that means you only have to check if they are bigger than a TCE page. For mappings, you need to check individual sglist entries. At this stage, if you hit that all you can do is fail, with maybe a rate limited printk. But it's better than whatever corruption or misbehaviour will happen if you don't catch them. I don't expect this to happen much if at all with 1G pages, as most "sg" mappings are probably be in unit of pages, but I still want to catch if it does happen. > The previous implementation for POWER8/PHB3 worked around this by > configuring a bypass from the default 32-bit address space into 64-bit > address space. This approach does not work for POWER9/PHB4 because > regions of memory are discontiguous and many devices will be unable to > address memory beyond the first node. > > Instead, implement a new set of DMA operations that allocate TCEs as DMA > mappings are requested so that all memory is addressable even when a > one-to-one mapping between real addresses and DMA addresses isn't > possible. These TCEs are the maximum size available on the platform, > which is 256M on PHB3 and 1G on PHB4. > > Devices can now map any region of memory up to the maximum amount they can > address according to the DMA mask set, in chunks of the largest available > TCE size. > > This implementation replaces the need for the existing PHB3 solution and > should be compatible with future PHB versions. > > It is, however, rather naive. There is no unmapping, and as a result > devices can eventually run out of space if they address their entire > DMA mask worth of TCEs. An implementation with unmap() will come in > future (and requires a much more complex implementation), but this is a > good start due to the drastic performance improvement. > > Signed-off-by: Russell Currey <rus...@russell.cc> > --- > arch/powerpc/include/asm/dma-mapping.h | 1 + > arch/powerpc/platforms/powernv/Makefile | 2 +- > arch/powerpc/platforms/powernv/pci-dma.c | 243 ++++++++++++++++++++++ > arch/powerpc/platforms/powernv/pci-ioda.c | 82 +++----- > arch/powerpc/platforms/powernv/pci.h | 7 + > 5 files changed, 281 insertions(+), 54 deletions(-) > create mode 100644 arch/powerpc/platforms/powernv/pci-dma.c > > diff --git a/arch/powerpc/include/asm/dma-mapping.h > b/arch/powerpc/include/asm/dma-mapping.h > index 8fa394520af6..354f435160f3 100644 > --- a/arch/powerpc/include/asm/dma-mapping.h > +++ b/arch/powerpc/include/asm/dma-mapping.h > @@ -74,6 +74,7 @@ static inline unsigned long device_to_mask(struct device > *dev) > extern struct dma_map_ops dma_iommu_ops; > #endif > extern const struct dma_map_ops dma_nommu_ops; > +extern const struct dma_map_ops dma_pseudo_bypass_ops; > > static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type > *bus) > { > diff --git a/arch/powerpc/platforms/powernv/Makefile > b/arch/powerpc/platforms/powernv/Makefile > index 703a350a7f4e..2467bdab3c13 100644 > --- a/arch/powerpc/platforms/powernv/Makefile > +++ b/arch/powerpc/platforms/powernv/Makefile > @@ -6,7 +6,7 @@ obj-y += opal-msglog.o opal-hmi.o > opal-power.o opal-irqchip.o > obj-y += opal-kmsg.o opal-powercap.o opal-psr.o > opal-sensor-groups.o > > obj-$(CONFIG_SMP) += smp.o subcore.o subcore-asm.o > -obj-$(CONFIG_PCI) += pci.o pci-ioda.o npu-dma.o > +obj-$(CONFIG_PCI) += pci.o pci-ioda.o npu-dma.o pci-dma.o > obj-$(CONFIG_CXL_BASE) += pci-cxl.o > obj-$(CONFIG_EEH) += eeh-powernv.o > obj-$(CONFIG_PPC_SCOM) += opal-xscom.o > diff --git a/arch/powerpc/platforms/powernv/pci-dma.c > b/arch/powerpc/platforms/powernv/pci-dma.c > new file mode 100644 > index 000000000000..79382627c7be > --- /dev/null > +++ b/arch/powerpc/platforms/powernv/pci-dma.c > @@ -0,0 +1,243 @@ > +/* > + * DMA operations supporting pseudo-bypass for PHB3+ > + * > + * Author: Russell Currey <rus...@russell.cc> > + * > + * Copyright 2018 IBM Corporation. > + * > + * This program is free software; you can redistribute it and/or modify it > + * under the terms of the GNU General Public License as published by the > + * Free Software Foundation; either version 2 of the License, or (at your > + * option) any later version. > + */ > + > +#include <linux/export.h> > +#include <linux/memblock.h> > +#include <linux/device.h> > +#include <linux/dma-mapping.h> > +#include <linux/hash.h> > + > +#include <asm/pci-bridge.h> > +#include <asm/ppc-pci.h> > +#include <asm/pnv-pci.h> > +#include <asm/tce.h> > + > +#include "pci.h" > + > +/* > + * This is a naive implementation that directly operates on TCEs, allocating > + * on demand. There is no locking or refcounts since no TCEs are ever > removed > + * and unmap does nothing. > + */ > +static dma_addr_t dma_pseudo_bypass_get_address(struct device *dev, > + phys_addr_t addr) > +{ > + struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); > + struct pci_controller *hose = pci_bus_to_host(pdev->bus); > + struct pnv_phb *phb = hose->private_data; > + struct pnv_ioda_pe *pe; > + u64 i, tce, ret, offset; > + __be64 entry; > + > + offset = addr & ((1 << phb->ioda.max_tce_order) - 1); > + > + pe = &phb->ioda.pe_array[pci_get_pdn(pdev)->pe_number]; > + > + /* look through the tracking table for a free entry */ > + for (i = 0; i < pe->tce_count; i++) { > + /* skip between 2GB and 4GB */ > + if ((i << phb->ioda.max_tce_order) >= 0x80000000 && > + (i << phb->ioda.max_tce_order) < 0x100000000) > + continue; > + > + tce = be64_to_cpu(pe->tces[i]); > + > + /* if the TCE is already valid (read + write) */ > + if ((tce & 3) == 3) { > + /* check if we're already allocated, if not move on */ > + if (tce >> phb->ioda.max_tce_order == > + addr >> phb->ioda.max_tce_order) { > + /* wait for the lock bit to clear */ > + while (be64_to_cpu(pe->tces[i]) & 4) > + cpu_relax(); > + > + return (i << phb->ioda.max_tce_order) | offset; > + } > + > + continue; > + } > + > + /* > + * The TCE isn't being used, so let's try and allocate it. > + * Bits 0 and 1 are read/write, and we use bit 2 as a "lock" > + * bit. This is to prevent any race where the value is set in > + * the TCE table but the invalidate/mb() hasn't finished yet. > + */ > + entry = cpu_to_be64((addr - offset) | 7); > + ret = cmpxchg(&pe->tces[i], tce, entry); > + if (ret != tce) { > + /* conflict, start looking again just in case */ > + i--; > + continue; > + } > + pnv_pci_phb3_tce_invalidate(pe, 0, 0, addr - offset, 1); > + mb(); > + /* clear the lock bit now that we know it's active */ > + ret = cmpxchg(&pe->tces[i], entry, cpu_to_be64((addr - offset) > | 3)); > + if (ret != entry) { > + /* conflict, start looking again just in case */ > + i--; > + continue; > + } > + > + return (i << phb->ioda.max_tce_order) | offset; > + } > + /* If we get here, the table must be full, so error out. */ > + return -1ULL; > +} > + > +/* > + * For now, don't actually do anything on unmap. > + */ > +static void dma_pseudo_bypass_unmap_address(struct device *dev, dma_addr_t > dma_addr) > +{ > +} > + > +static int dma_pseudo_bypass_dma_supported(struct device *dev, u64 mask) > +{ > + /* > + * Normally dma_supported() checks if the mask is capable of addressing > + * all of memory. Since we map physical memory in chunks that the > + * device can address, the device will be able to address whatever it > + * wants - just not all at once. > + */ > + return 1; > +} > + > +static void *dma_pseudo_bypass_alloc_coherent(struct device *dev, > + size_t size, > + dma_addr_t *dma_handle, > + gfp_t flag, > + unsigned long attrs) > +{ > + void *ret; > + struct page *page; > + int node = dev_to_node(dev); > + > + /* ignore region specifiers */ > + flag &= ~(__GFP_HIGHMEM); > + > + page = alloc_pages_node(node, flag, get_order(size)); > + if (page == NULL) > + return NULL; > + ret = page_address(page); > + memset(ret, 0, size); > + *dma_handle = dma_pseudo_bypass_get_address(dev, __pa(ret)); > + > + return ret; > +} > + > +static void dma_pseudo_bypass_free_coherent(struct device *dev, > + size_t size, > + void *vaddr, > + dma_addr_t dma_handle, > + unsigned long attrs) > +{ > + free_pages((unsigned long)vaddr, get_order(size)); > +} > + > +static int dma_pseudo_bypass_mmap_coherent(struct device *dev, > + struct vm_area_struct *vma, > + void *cpu_addr, > + dma_addr_t handle, > + size_t size, > + unsigned long attrs) > +{ > + unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr)); > + > + return remap_pfn_range(vma, vma->vm_start, > + pfn + vma->vm_pgoff, > + vma->vm_end - vma->vm_start, > + vma->vm_page_prot); > +} > + > +static inline dma_addr_t dma_pseudo_bypass_map_page(struct device *dev, > + struct page *page, > + unsigned long offset, > + size_t size, > + enum dma_data_direction dir, > + unsigned long attrs) > +{ > + BUG_ON(dir == DMA_NONE); > + > + return dma_pseudo_bypass_get_address(dev, page_to_phys(page) + offset); > +} > + > +static inline void dma_pseudo_bypass_unmap_page(struct device *dev, > + dma_addr_t dma_address, > + size_t size, > + enum dma_data_direction direction, > + unsigned long attrs) > +{ > + dma_pseudo_bypass_unmap_address(dev, dma_address); > +} > + > + > +static int dma_pseudo_bypass_map_sg(struct device *dev, struct scatterlist > *sgl, > + int nents, enum dma_data_direction direction, > + unsigned long attrs) > +{ > + struct scatterlist *sg; > + int i; > + > + > + for_each_sg(sgl, sg, nents, i) { > + sg->dma_address = dma_pseudo_bypass_get_address(dev, > sg_phys(sg)); > + sg->dma_length = sg->length; > + > + __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction); > + } > + > + return nents; > +} > + > +static void dma_pseudo_bypass_unmap_sg(struct device *dev, struct > scatterlist *sgl, > + int nents, enum dma_data_direction direction, > + unsigned long attrs) > +{ > + struct scatterlist *sg; > + int i; > + > + for_each_sg(sgl, sg, nents, i) { > + dma_pseudo_bypass_unmap_address(dev, sg->dma_address); > + } > +} > + > +static u64 dma_pseudo_bypass_get_required_mask(struct device *dev) > +{ > + /* > + * there's no limitation on our end, the driver should just call > + * set_mask() with as many bits as the device can address. > + */ > + return -1ULL; > +} > + > +static int dma_pseudo_bypass_mapping_error(struct device *dev, dma_addr_t > dma_addr) > +{ > + return dma_addr == -1ULL; > +} > + > + > +const struct dma_map_ops dma_pseudo_bypass_ops = { > + .alloc = dma_pseudo_bypass_alloc_coherent, > + .free = dma_pseudo_bypass_free_coherent, > + .mmap = dma_pseudo_bypass_mmap_coherent, > + .map_sg = dma_pseudo_bypass_map_sg, > + .unmap_sg = dma_pseudo_bypass_unmap_sg, > + .dma_supported = dma_pseudo_bypass_dma_supported, > + .map_page = dma_pseudo_bypass_map_page, > + .unmap_page = dma_pseudo_bypass_unmap_page, > + .get_required_mask = dma_pseudo_bypass_get_required_mask, > + .mapping_error = dma_pseudo_bypass_mapping_error, > +}; > +EXPORT_SYMBOL(dma_pseudo_bypass_ops); > diff --git a/arch/powerpc/platforms/powernv/pci-ioda.c > b/arch/powerpc/platforms/powernv/pci-ioda.c > index 17c590087279..d2ca214610fd 100644 > --- a/arch/powerpc/platforms/powernv/pci-ioda.c > +++ b/arch/powerpc/platforms/powernv/pci-ioda.c > @@ -1088,6 +1088,7 @@ static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct > pci_dev *dev) > pe->pbus = NULL; > pe->mve_number = -1; > pe->rid = dev->bus->number << 8 | pdn->devfn; > + pe->tces = NULL; > > pe_info(pe, "Associated device to PE\n"); > > @@ -1569,6 +1570,7 @@ static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, > u16 num_vfs) > pe->mve_number = -1; > pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | > pci_iov_virtfn_devfn(pdev, vf_index); > + pe->tces = NULL; > > pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", > hose->global_number, pdev->bus->number, > @@ -1774,43 +1776,22 @@ static bool pnv_pci_ioda_pe_single_vendor(struct > pnv_ioda_pe *pe) > return true; > } > > -/* > - * Reconfigure TVE#0 to be usable as 64-bit DMA space. > - * > - * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. > - * Devices can only access more than that if bit 59 of the PCI address is set > - * by hardware, which indicates TVE#1 should be used instead of TVE#0. > - * Many PCI devices are not capable of addressing that many bits, and as a > - * result are limited to the 4GB of virtual memory made available to 32-bit > - * devices in TVE#0. > - * > - * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit > - * devices by configuring the virtual memory past the first 4GB inaccessible > - * by 64-bit DMAs. This should only be used by devices that want more than > - * 4GB, and only on PEs that have no 32-bit devices. > - * > - * Currently this will only work on PHB3 (POWER8). > - */ > -static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) > +static int pnv_pci_pseudo_bypass_setup(struct pnv_ioda_pe *pe) > { > - u64 window_size, table_size, tce_count, addr; > + u64 tce_count, table_size, window_size; > + struct pnv_phb *p = pe->phb; > struct page *table_pages; > - u64 tce_order = 28; /* 256MB TCEs */ > __be64 *tces; > - s64 rc; > + int rc = -ENOMEM; > > - /* > - * Window size needs to be a power of two, but needs to account for > - * shifting memory by the 4GB offset required to skip 32bit space. > - */ > - window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); > - tce_count = window_size >> tce_order; > + window_size = roundup_pow_of_two(memory_hotplug_max()); > + tce_count = window_size >> p->ioda.max_tce_order; > table_size = tce_count << 3; > > if (table_size < PAGE_SIZE) > table_size = PAGE_SIZE; > > - table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, > + table_pages = alloc_pages_node(p->hose->node, GFP_KERNEL, > get_order(table_size)); > if (!table_pages) > goto err; > @@ -1821,26 +1802,23 @@ static int pnv_pci_ioda_dma_64bit_bypass(struct > pnv_ioda_pe *pe) > > memset(tces, 0, table_size); > > - for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { > - tces[(addr + (1ULL << 32)) >> tce_order] = > - cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); > - } > + pe->tces = tces; > + pe->tce_count = tce_count; > > rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, > pe->pe_number, > - /* reconfigure window 0 */ > (pe->pe_number << 1) + 0, > 1, > __pa(tces), > table_size, > - 1 << tce_order); > + 1 << p->ioda.max_tce_order); > if (rc == OPAL_SUCCESS) { > - pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); > + pe_info(pe, "TCE tables configured for pseudo-bypass\n"); > return 0; > } > err: > - pe_err(pe, "Error configuring 64-bit DMA bypass\n"); > - return -EIO; > + pe_err(pe, "error configuring pseudo-bypass\n"); > + return rc; > } > > static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) > @@ -1851,7 +1829,6 @@ static int pnv_pci_ioda_dma_set_mask(struct pci_dev > *pdev, u64 dma_mask) > struct pnv_ioda_pe *pe; > uint64_t top; > bool bypass = false; > - s64 rc; > > if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) > return -ENODEV; > @@ -1868,21 +1845,15 @@ static int pnv_pci_ioda_dma_set_mask(struct pci_dev > *pdev, u64 dma_mask) > } else { > /* > * If the device can't set the TCE bypass bit but still wants > - * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to > - * bypass the 32-bit region and be usable for 64-bit DMAs. > - * The device needs to be able to address all of this space. > + * to access 4GB or more, we need to use a different set of DMA > + * operations with an indirect mapping. > */ > if (dma_mask >> 32 && > - dma_mask > (memory_hotplug_max() + (1ULL << 32)) && > - pnv_pci_ioda_pe_single_vendor(pe) && > - phb->model == PNV_PHB_MODEL_PHB3) { > - /* Configure the bypass mode */ > - rc = pnv_pci_ioda_dma_64bit_bypass(pe); > - if (rc) > - return rc; > - /* 4GB offset bypasses 32-bit space */ > - set_dma_offset(&pdev->dev, (1ULL << 32)); > - set_dma_ops(&pdev->dev, &dma_nommu_ops); > + phb->model != PNV_PHB_MODEL_P7IOC && > + pnv_pci_ioda_pe_single_vendor(pe)) { > + if (!pe->tces) > + pnv_pci_pseudo_bypass_setup(pe); > + set_dma_ops(&pdev->dev, &dma_pseudo_bypass_ops); > } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) { > /* > * Fail the request if a DMA mask between 32 and 64 bits > @@ -2071,7 +2042,7 @@ static inline void > pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) > __raw_writeq_be(val, invalidate); > } > > -static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, > +void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, > unsigned shift, unsigned long index, > unsigned long npages) > { > @@ -2611,10 +2582,15 @@ static unsigned long > pnv_pci_ioda2_get_table_size(__u32 page_shift, > static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) > { > struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, > - table_group); > + table_group); > + > /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ > struct iommu_table *tbl = pe->table_group.tables[0]; > > + if (pe->tces) > + free_pages((unsigned long)pe->tces, > + get_order(pe->tce_count << 3)); > + > pnv_pci_ioda2_set_bypass(pe, false); > pnv_pci_ioda2_unset_window(&pe->table_group, 0); > if (pe->pbus) > diff --git a/arch/powerpc/platforms/powernv/pci.h > b/arch/powerpc/platforms/powernv/pci.h > index c9952def5e93..56846ddc76a2 100644 > --- a/arch/powerpc/platforms/powernv/pci.h > +++ b/arch/powerpc/platforms/powernv/pci.h > @@ -70,6 +70,10 @@ struct pnv_ioda_pe { > bool tce_bypass_enabled; > uint64_t tce_bypass_base; > > + /* TCE tables for DMA pseudo-bypass */ > + __be64 *tces; > + u64 tce_count; > + > /* MSIs. MVE index is identical for for 32 and 64 bit MSI > * and -1 if not supported. (It's actually identical to the > * PE number) > @@ -211,6 +215,9 @@ extern void pnv_tce_free(struct iommu_table *tbl, long > index, long npages); > extern int pnv_tce_xchg(struct iommu_table *tbl, long index, > unsigned long *hpa, enum dma_data_direction *direction); > extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index); > +extern void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, > + unsigned shift, unsigned long index, > + unsigned long npages); > > void pnv_pci_dump_phb_diag_data(struct pci_controller *hose, > unsigned char *log_buff);