Add driver for arm pl353 static memory controller nand interface with HW ECC support. This controller is used in xilinx zynq soc for interfacing the nand flash memory.
Signed-off-by: Punnaiah Choudary Kalluri <punn...@xilinx.com> --- Changes in v7: - Currently not implemented the memclk rate adjustments. I will look into this later and once the basic driver is accepted. - Fixed GPL licence ident Changes in v6: - Fixed the checkpatch.pl reported warnings - Using the address cycles information from the onfi param page earlier it is hardcoded to 5 in driver Changes in v5: - Configure the nand timing parameters as per the onfi spec Changes in v4: - Updated the driver to sync with pl353_smc driver APIs Changes in v3: - implemented the proper error codes - further breakdown this patch to multiple sets - added the controller and driver details to Documentation section - updated the licenece to GPLv2 - reorganized the pl353_nand_ecc_init function Changes in v2: - use "depends on" rather than "select" option in kconfig - remove unused variable parts - remove dummy helper and use writel_relaxed directly --- drivers/mtd/nand/Kconfig | 7 + drivers/mtd/nand/Makefile | 1 + drivers/mtd/nand/pl353_nand.c | 909 +++++++++++++++++++++++++++++++++++++++++ 3 files changed, 917 insertions(+), 0 deletions(-) create mode 100644 drivers/mtd/nand/pl353_nand.c diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 5897d8d..c14a955 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -497,6 +497,13 @@ config MTD_NAND_NUC900 This enables the driver for the NAND Flash on evaluation board based on w90p910 / NUC9xx. +config MTD_NAND_PL353 + tristate "ARM Pl353 NAND flash driver" + depends on MTD_NAND && ARM + depends on PL353_SMC + help + This enables access to the NAND flash device on PL353 SMC controller. + config MTD_NAND_JZ4740 tristate "Support for JZ4740 SoC NAND controller" depends on MACH_JZ4740 diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 582bbd05..c68fd7c 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o +obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o nand-objs := nand_base.o nand_bbt.o nand_timings.o diff --git a/drivers/mtd/nand/pl353_nand.c b/drivers/mtd/nand/pl353_nand.c new file mode 100644 index 0000000..ff6cf3e --- /dev/null +++ b/drivers/mtd/nand/pl353_nand.c @@ -0,0 +1,909 @@ +/* + * ARM PL353 NAND Flash Controller Driver + * + * Copyright (C) 2009 - 2014 Xilinx, Inc. + * + * This driver is based on plat_nand.c and mxc_nand.c drivers + * + * This program is free software; you can redistribute it and/or modify it under + * the terms of the GNU General Public License version 2 as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + */ + +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/irq.h> +#include <linux/memory/pl353-smc.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/partitions.h> +#include <linux/of_address.h> +#include <linux/of_device.h> +#include <linux/of_mtd.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#define PL353_NAND_DRIVER_NAME "pl353-nand" + +/* NAND flash driver defines */ +#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */ +#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */ +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */ + +/* Flash memory controller operating parameters */ + +#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \ + (0 << 5)) /* No Jumping */ + +/* AXI Address definitions */ +#define START_CMD_SHIFT 3 +#define END_CMD_SHIFT 11 +#define END_CMD_VALID_SHIFT 20 +#define ADDR_CYCLES_SHIFT 21 +#define CLEAR_CS_SHIFT 21 +#define ECC_LAST_SHIFT 10 +#define COMMAND_PHASE (0 << 19) +#define DATA_PHASE BIT(19) + +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */ +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */ + +#define ONDIE_ECC_FEATURE_ADDR 0x90 +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 + +/** + * struct pl353_nand_command_format - Defines NAND flash command format + * @start_cmd: First cycle command (Start command) + * @end_cmd: Second cycle command (Last command) + * @addr_cycles: Number of address cycles required to send the address + * @end_cmd_valid: The second cycle command is valid for cmd or data phase + */ +struct pl353_nand_command_format { + int start_cmd; + int end_cmd; + u8 addr_cycles; + u8 end_cmd_valid; +}; + +/** + * struct pl353_nand_info - Defines the NAND flash driver instance + * @chip: NAND chip information structure + * @mtd: MTD information structure + * @nand_base: Virtual address of the NAND flash device + * @end_cmd_pending: End command is pending + * @end_cmd: End command + * @ecc_mode: ECC mode + * @raddr_cycles: Row address cycles + * @caddr_cycles: Column address cycles + */ +struct pl353_nand_info { + struct nand_chip chip; + struct mtd_info mtd; + void __iomem *nand_base; + unsigned long end_cmd_pending; + unsigned long end_cmd; + int ecc_mode; + u8 raddr_cycles; + u8 caddr_cycles; +}; + +/* + * The NAND flash operations command format + */ +static const struct pl353_nand_command_format pl353_nand_commands[] = { + {NAND_CMD_READ0, NAND_CMD_READSTART, 5, PL353_NAND_CMD_PHASE}, + {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, PL353_NAND_CMD_PHASE}, + {NAND_CMD_READID, NAND_CMD_NONE, 1, NAND_CMD_NONE}, + {NAND_CMD_STATUS, NAND_CMD_NONE, 0, NAND_CMD_NONE}, + {NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, PL353_NAND_DATA_PHASE}, + {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, NAND_CMD_NONE}, + {NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, PL353_NAND_CMD_PHASE}, + {NAND_CMD_RESET, NAND_CMD_NONE, 0, NAND_CMD_NONE}, + {NAND_CMD_PARAM, NAND_CMD_NONE, 1, NAND_CMD_NONE}, + {NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE}, + {NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE}, + {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0}, + /* Add all the flash commands supported by the flash device and Linux */ + /* + * The cache program command is not supported by driver because driver + * cant differentiate between page program and cached page program from + * start command, these commands can be differentiated through end + * command, which doesn't fit in to the driver design. The cache program + * command is not supported by NAND subsystem also, look at 1612 line + * number (in nand_write_page function) of nand_base.c file. + * {NAND_CMD_SEQIN, NAND_CMD_CACHEDPROG, 5, PL353_NAND_YES}, + */ +}; + +/* Define default oob placement schemes for large and small page devices */ +static struct nand_ecclayout nand_oob_16 = { + .eccbytes = 3, + .eccpos = {0, 1, 2}, + .oobfree = { + {.offset = 8, + . length = 8} } +}; + +static struct nand_ecclayout nand_oob_64 = { + .eccbytes = 12, + .eccpos = { + 52, 53, 54, 55, 56, 57, + 58, 59, 60, 61, 62, 63}, + .oobfree = { + {.offset = 2, + .length = 50} } +}; + +static unsigned int get_cyc_from_ns(u32 clkrate, u32 ns) +{ + unsigned int cycle; + + cycle = NSEC_PER_SEC / clkrate; + return DIV_ROUND_CLOSEST(ns, cycle); +} + +/** + * pl353_nand_calculate_hwecc - Calculate Hardware ECC + * @mtd: Pointer to the mtd_info structure + * @data: Pointer to the page data + * @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored + * + * This function retrieves the Hardware ECC data from the controller and returns + * ECC data back to the MTD subsystem. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_calculate_hwecc(struct mtd_info *mtd, + const u8 *data, u8 *ecc_code) +{ + u32 ecc_value, ecc_status; + u8 ecc_reg, ecc_byte; + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; + + /* Wait till the ECC operation is complete or timeout */ + do { + if (pl353_smc_ecc_is_busy(mtd->dev.parent)) + cpu_relax(); + else + break; + } while (!time_after_eq(jiffies, timeout)); + + if (time_after_eq(jiffies, timeout)) { + pr_err("%s timed out\n", __func__); + return -ETIMEDOUT; + } + + for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) { + /* Read ECC value for each block */ + ecc_value = pl353_smc_get_ecc_val(mtd->dev.parent, ecc_reg); + ecc_status = (ecc_value >> 24) & 0xFF; + /* ECC value valid */ + if (ecc_status & 0x40) { + for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) { + /* Copy ECC bytes to MTD buffer */ + *ecc_code = ecc_value & 0xFF; + ecc_value = ecc_value >> 8; + ecc_code++; + } + } else { + pr_warn("%s status failed\n", __func__); + return -EINVAL; + } + } + return 0; +} + +/** + * onehot - onehot function + * @value: Value to check for onehot + * + * This function checks whether a value is onehot or not. + * onehot is if and only if onebit is set. + * + * Return: 1 if it is onehot else 0 + */ +static int onehot(unsigned short value) +{ + return (value & (value - 1)) == 0; +} + +/** + * pl353_nand_correct_data - ECC correction function + * @mtd: Pointer to the mtd_info structure + * @buf: Pointer to the page data + * @read_ecc: Pointer to the ECC value read from spare data area + * @calc_ecc: Pointer to the calculated ECC value + * + * This function corrects the ECC single bit errors & detects 2-bit errors. + * + * Return: 0 if no ECC errors found + * 1 if single bit error found and corrected. + * -1 if multiple ECC errors found. + */ +static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + unsigned char bit_addr; + unsigned int byte_addr; + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; + unsigned short calc_ecc_lower, calc_ecc_upper; + + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff; + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff; + + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff; + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff; + + ecc_odd = read_ecc_lower ^ calc_ecc_lower; + ecc_even = read_ecc_upper ^ calc_ecc_upper; + + if ((ecc_odd == 0) && (ecc_even == 0)) + return 0; /* no error */ + + if (ecc_odd == (~ecc_even & 0xfff)) { + /* bits [11:3] of error code is byte offset */ + byte_addr = (ecc_odd >> 3) & 0x1ff; + /* bits [2:0] of error code is bit offset */ + bit_addr = ecc_odd & 0x7; + /* Toggling error bit */ + buf[byte_addr] ^= (1 << bit_addr); + return 1; + } + + if (onehot(ecc_odd | ecc_even) == 1) + return 1; /* one error in parity */ + + return -EBADMSG; /* Uncorrectable error */ +} + +/** + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @page: Page number to read + * + * Return: Always return zero + */ +static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + unsigned long data_phase_addr; + uint8_t *p; + + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + + p = chip->oob_poi; + chip->read_buf(mtd, p, + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr |= PL353_NAND_CLEAR_CS; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); + + return 0; +} + +/** + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @page: Page number to write + * + * Return: Zero on success and EIO on failure + */ +static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + int status = 0; + const uint8_t *buf = chip->oob_poi; + unsigned long data_phase_addr; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + + chip->write_buf(mtd, buf, + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + chip->write_buf(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Send command to program the OOB data */ + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +/** + * nand_write_page_hwecc - Hardware ECC based page write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * + * This functions writes data and hardware generated ECC values in to the page. + * + * Return: Zero on success and error on failure. + */ +static int pl353_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, + int oob_required) +{ + int i, status, eccsize = chip->ecc.size; + int eccsteps = chip->ecc.steps; + uint8_t *ecc_calc = chip->buffers->ecccalc; + const uint8_t *p = buf; + uint32_t *eccpos = chip->ecc.layout->eccpos; + unsigned long data_phase_addr; + uint8_t *oob_ptr; + + for ( ; (eccsteps - 1); eccsteps--) { + chip->write_buf(mtd, p, eccsize); + p += eccsize; + } + chip->write_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Set ECC Last bit to 1 */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr |= PL353_NAND_ECC_LAST; + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + chip->write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Wait for ECC to be calculated and read the error values */ + p = buf; + status = chip->ecc.calculate(mtd, p, &ecc_calc[0]); + if (status) + return status; + + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]); + + /* Clear ECC last bit */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr &= ~PL353_NAND_ECC_LAST; + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + + /* Write the spare area with ECC bytes */ + oob_ptr = chip->oob_poi; + chip->write_buf(mtd, oob_ptr, + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); + + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + chip->write_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); + + return 0; +} + +/** + * pl353_nand_read_page_hwecc - Hardware ECC based page read function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the buffer to store read data + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to read + * + * This functions reads data and checks the data integrity by comparing hardware + * generated ECC values and read ECC values from spare area. + * + * Return: 0 always and updates ECC operation status in to MTD structure + */ +static int pl353_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + uint32_t *eccpos = chip->ecc.layout->eccpos; + unsigned long data_phase_addr; + uint8_t *oob_ptr; + + for ( ; (eccsteps - 1); eccsteps--) { + chip->read_buf(mtd, p, eccsize); + p += eccsize; + } + chip->read_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Set ECC Last bit to 1 */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr |= PL353_NAND_ECC_LAST; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Read the calculated ECC value */ + p = buf; + stat = chip->ecc.calculate(mtd, p, &ecc_calc[0]); + if (stat < 0) + return stat; + + /* Clear ECC last bit */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr &= ~PL353_NAND_ECC_LAST; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + + /* Read the stored ECC value */ + oob_ptr = chip->oob_poi; + chip->read_buf(mtd, oob_ptr, + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); + + /* de-assert chip select */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr |= PL353_NAND_CLEAR_CS; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + chip->read_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); + + for (i = 0; i < chip->ecc.total; i++) + ecc_code[i] = ~(chip->oob_poi[eccpos[i]]); + + eccsteps = chip->ecc.steps; + p = buf; + + /* Check ECC error for all blocks and correct if it is correctable */ + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + return 0; +} + +/** + * pl353_nand_select_chip - Select the flash device + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * + * This function is empty as the NAND controller handles chip select line + * internally based on the chip address passed in command and data phase. + */ +static void pl353_nand_select_chip(struct mtd_info *mtd, int chip) +{ + +} + +/** + * pl353_nand_cmd_function - Send command to NAND device + * @mtd: Pointer to the mtd_info structure + * @command: The command to be sent to the flash device + * @column: The column address for this command, -1 if none + * @page_addr: The page address for this command, -1 if none + */ +static void pl353_nand_cmd_function(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + const struct pl353_nand_command_format *curr_cmd = NULL; + struct pl353_nand_info *xnand = + container_of(mtd, struct pl353_nand_info, mtd); + void __iomem *cmd_addr; + unsigned long cmd_data = 0, end_cmd_valid = 0; + unsigned long cmd_phase_addr, data_phase_addr, end_cmd, i; + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; + u32 addrcycles; + + if (xnand->end_cmd_pending) { + /* + * Check for end command if this command request is same as the + * pending command then return + */ + if (xnand->end_cmd == command) { + xnand->end_cmd = 0; + xnand->end_cmd_pending = 0; + return; + } + } + + /* Emulate NAND_CMD_READOOB for large page device */ + if ((mtd->writesize > PL353_NAND_ECC_SIZE) && + (command == NAND_CMD_READOOB)) { + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + /* Get the command format */ + for (i = 0; (pl353_nand_commands[i].start_cmd != NAND_CMD_NONE || + pl353_nand_commands[i].end_cmd != NAND_CMD_NONE); i++) + if (command == pl353_nand_commands[i].start_cmd) + curr_cmd = &pl353_nand_commands[i]; + + if (curr_cmd == NULL) + return; + + /* Clear interrupt */ + pl353_smc_clr_nand_int(mtd->dev.parent); + + /* Get the command phase address */ + if (curr_cmd->end_cmd_valid == PL353_NAND_CMD_PHASE) + end_cmd_valid = 1; + + if (curr_cmd->end_cmd == NAND_CMD_NONE) + end_cmd = 0x0; + else + end_cmd = curr_cmd->end_cmd; + + if ((command == NAND_CMD_READ0) && (command == NAND_CMD_SEQIN)) + addrcycles = xnand->raddr_cycles + xnand->caddr_cycles; + else if (command == NAND_CMD_ERASE1) + addrcycles = xnand->raddr_cycles; + else + addrcycles = curr_cmd->addr_cycles; + + cmd_phase_addr = (unsigned long __force)xnand->nand_base | + (addrcycles << ADDR_CYCLES_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (COMMAND_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (curr_cmd->start_cmd << START_CMD_SHIFT); + + cmd_addr = (void __iomem * __force)cmd_phase_addr; + + /* Get the data phase address */ + end_cmd_valid = 0; + + data_phase_addr = (unsigned long __force)xnand->nand_base | + (0x0 << CLEAR_CS_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (DATA_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (0x0 << ECC_LAST_SHIFT); + + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + chip->IO_ADDR_W = chip->IO_ADDR_R; + + /* Command phase AXI write */ + /* Read & Write */ + if (column != -1 && page_addr != -1) { + /* Adjust columns for 16 bit bus width */ + if (chip->options & NAND_BUSWIDTH_16) + column >>= 1; + cmd_data = column; + if (mtd->writesize > PL353_NAND_ECC_SIZE) { + cmd_data |= page_addr << 16; + /* Another address cycle for devices > 128MiB */ + if (chip->chipsize > (128 << 20)) { + writel_relaxed(cmd_data, cmd_addr); + cmd_data = (page_addr >> 16); + } + } else { + cmd_data |= page_addr << 8; + } + } else if (page_addr != -1) { + /* Erase */ + cmd_data = page_addr; + } else if (column != -1) { + /* + * Change read/write column, read id etc + * Adjust columns for 16 bit bus width + */ + if ((chip->options & NAND_BUSWIDTH_16) && + ((command == NAND_CMD_READ0) || + (command == NAND_CMD_SEQIN) || + (command == NAND_CMD_RNDOUT) || + (command == NAND_CMD_RNDIN))) + column >>= 1; + cmd_data = column; + } + + writel_relaxed(cmd_data, cmd_addr); + + if (curr_cmd->end_cmd_valid) { + xnand->end_cmd = curr_cmd->end_cmd; + xnand->end_cmd_pending = 1; + } + + ndelay(100); + + if ((command == NAND_CMD_READ0) || + (command == NAND_CMD_RESET) || + (command == NAND_CMD_PARAM) || + (command == NAND_CMD_GET_FEATURES)) { + + /* Wait till the device is ready or timeout */ + do { + if (chip->dev_ready(mtd)) + break; + cpu_relax(); + } while (!time_after_eq(jiffies, timeout)); + + if (time_after_eq(jiffies, timeout)) + pr_err("%s timed out\n", __func__); + return; + } +} + +/** + * pl353_nand_read_buf - read chip data into buffer + * @mtd: Pointer to the mtd info structure + * @buf: Pointer to the buffer to store read data + * @len: Number of bytes to read + */ +static void pl353_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + unsigned long *ptr = (unsigned long *)buf; + + len >>= 2; + for (i = 0; i < len; i++) + ptr[i] = readl(chip->IO_ADDR_R); +} + +/** + * pl353_nand_write_buf - write buffer to chip + * @mtd: Pointer to the mtd info structure + * @buf: Pointer to the buffer to store read data + * @len: Number of bytes to write + */ +static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + unsigned long *ptr = (unsigned long *)buf; + + len >>= 2; + + for (i = 0; i < len; i++) + writel(ptr[i], chip->IO_ADDR_W); +} + +/** + * pl353_nand_device_ready - Check device ready/busy line + * @mtd: Pointer to the mtd_info structure + * + * Return: 0 on busy or 1 on ready state + */ +static int pl353_nand_device_ready(struct mtd_info *mtd) +{ + if (pl353_smc_get_nand_int_status_raw(mtd->dev.parent)) { + pl353_smc_clr_nand_int(mtd->dev.parent); + return 1; + } + return 0; +} + +/** + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode + * @mtd: Pointer to the mtd_info structure + * + * This function initializes the ecc block and functional pointers as per the + * ecc mode + * + * Return: Zero on success and error on failure. + */ +static int pl353_nand_ecc_init(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct pl353_nand_info *xnand = + container_of(mtd, struct pl353_nand_info, mtd); + + nand_chip->ecc.read_oob = pl353_nand_read_oob; + nand_chip->ecc.write_oob = pl353_nand_write_oob; + nand_chip->ecc.strength = 1; + + switch (xnand->ecc_mode) { + case NAND_ECC_HW: + if (mtd->writesize > 2048) { + pr_warn("hardware ECC not possible\n"); + return -ENOTSUPP; + } + + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.calculate = pl353_nand_calculate_hwecc; + nand_chip->ecc.correct = pl353_nand_correct_data; + nand_chip->ecc.hwctl = NULL; + nand_chip->ecc.read_page = pl353_nand_read_page_hwecc; + nand_chip->ecc.size = PL353_NAND_ECC_SIZE; + nand_chip->ecc.write_page = pl353_nand_write_page_hwecc; + pl353_smc_set_ecc_pg_size(mtd->dev.parent, mtd->writesize); + pl353_smc_set_ecc_mode(mtd->dev.parent, PL353_SMC_ECCMODE_APB); + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ + nand_chip->ecc.bytes = 3; + + if (mtd->oobsize == 16) + nand_chip->ecc.layout = &nand_oob_16; + else + nand_chip->ecc.layout = &nand_oob_64; + + break; + default: + return -ENOTSUPP; + } + + return 0; +} + +static int pl353_nand_init_timing(struct device *dev, int mode) +{ + const struct nand_sdr_timings *time; + u32 t_rc, t_wc, t_rea, t_wp, t_clr, t_ar, t_rr; + ulong clkrate; + + time = onfi_async_timing_mode_to_sdr_timings(mode); + if (IS_ERR(time)) + return PTR_ERR(time); + + clkrate = pl353_smc_get_clkrate(dev); + t_rc = get_cyc_from_ns(clkrate, time->tRC_min / 1000); + t_wc = get_cyc_from_ns(clkrate, time->tWC_min / 1000); + t_rea = get_cyc_from_ns(clkrate, time->tREA_max / 1000); + t_wp = get_cyc_from_ns(clkrate, time->tWP_min / 1000); + t_clr = get_cyc_from_ns(clkrate, time->tCLR_min / 1000); + t_ar = get_cyc_from_ns(clkrate, time->tAR_min / 1000); + t_rr = get_cyc_from_ns(clkrate, time->tRR_min / 1000); + + pl353_smc_set_cycles(dev, t_rc, t_wc, t_rea, t_wp, t_clr, t_ar, t_rr); + + return 0; +} + +/** + * pl353_nand_probe - Probe method for the NAND driver + * @pdev: Pointer to the platform_device structure + * + * This function initializes the driver data structures and the hardware. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_probe(struct platform_device *pdev) +{ + struct pl353_nand_info *xnand; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct resource *res; + struct mtd_part_parser_data ppdata; + + xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL); + if (!xnand) + return -ENOMEM; + + /* Map physical address of NAND flash */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + xnand->nand_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(xnand->nand_base)) + return PTR_ERR(xnand->nand_base); + + /* Link the private data with the MTD structure */ + mtd = &xnand->mtd; + nand_chip = &xnand->chip; + + nand_chip->priv = xnand; + mtd->priv = nand_chip; + mtd->dev.parent = pdev->dev.parent; + mtd->owner = THIS_MODULE; + mtd->name = PL353_NAND_DRIVER_NAME; + + /* Set address of NAND IO lines */ + nand_chip->IO_ADDR_R = xnand->nand_base; + nand_chip->IO_ADDR_W = xnand->nand_base; + + /* Set the driver entry points for MTD */ + nand_chip->cmdfunc = pl353_nand_cmd_function; + nand_chip->dev_ready = pl353_nand_device_ready; + nand_chip->select_chip = pl353_nand_select_chip; + + /* If we don't set this delay driver sets 20us by default */ + nand_chip->chip_delay = 30; + + /* Buffer read/write routines */ + nand_chip->read_buf = pl353_nand_read_buf; + nand_chip->write_buf = pl353_nand_write_buf; + + /* Set the device option and flash width */ + nand_chip->options = NAND_BUSWIDTH_AUTO; + nand_chip->bbt_options = NAND_BBT_USE_FLASH; + + platform_set_drvdata(pdev, xnand); + if (pl353_nand_init_timing(pdev->dev.parent, 0)) + return -ENOTSUPP; + /* First scan to find the device and get the page size */ + if (nand_scan_ident(mtd, 1, NULL)) { + dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n"); + return -ENXIO; + } + + xnand->ecc_mode = of_get_nand_ecc_mode(pdev->dev.of_node); + if (xnand->ecc_mode < 0) + xnand->ecc_mode = NAND_ECC_HW; + + if (nand_chip->onfi_version) { + xnand->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF; + xnand->caddr_cycles = + (nand_chip->onfi_params.addr_cycles >> 4) & 0xF; + } else { + /*For non-ONFI devices, configuring the address cyles as 5 */ + xnand->raddr_cycles = xnand->caddr_cycles = 5; + } + + if (pl353_nand_ecc_init(mtd)) + return -ENOTSUPP; + + if (nand_chip->options & NAND_BUSWIDTH_16) + pl353_smc_set_buswidth(pdev->dev.parent, + PL353_SMC_MEM_WIDTH_16); + + /* TODO: Based on the parameter page info, change the timing mode */ + + if (nand_scan_tail(mtd)) { + dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n"); + return -ENXIO; + } + + ppdata.of_node = pdev->dev.of_node; + + mtd_device_parse_register(&xnand->mtd, NULL, &ppdata, NULL, 0); + + return 0; +} + +/** + * pl353_nand_remove - Remove method for the NAND driver + * @pdev: Pointer to the platform_device structure + * + * This function is called if the driver module is being unloaded. It frees all + * resources allocated to the device. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_remove(struct platform_device *pdev) +{ + struct pl353_nand_info *xnand = platform_get_drvdata(pdev); + + /* Release resources, unregister device */ + nand_release(&xnand->mtd); + + return 0; +} + +/* Match table for device tree binding */ +static const struct of_device_id pl353_nand_of_match[] = { + { .compatible = "arm,pl353-nand-r2p1" }, + {}, +}; +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); + +/* + * pl353_nand_driver - This structure defines the NAND subsystem platform driver + */ +static struct platform_driver pl353_nand_driver = { + .probe = pl353_nand_probe, + .remove = pl353_nand_remove, + .driver = { + .name = PL353_NAND_DRIVER_NAME, + .of_match_table = pl353_nand_of_match, + }, +}; + +module_platform_driver(pl353_nand_driver); + +MODULE_AUTHOR("Punnaiah Choudary Kalluri <punn...@xilinx.com>"); +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); +MODULE_LICENSE("GPL"); -- 1.7.4 -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majord...@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/