On Wed, Jan 21, 2015 at 8:46 PM, Bryan O'Donoghue <pure.lo...@nexus-software.ie> wrote: > Intel's Quark X1000 SoC contains a set of registers called Isolated Memory > Regions. IMRs are accessed over the IOSF mailbox interface. IMRs are areas > carved out of memory that define read/write access rights to the various > system agents within the Quark system. For a given agent in the system it is > possible to specify if that agent may read or write an area of memory > defined by an IMR with a granularity of 1 KiB. > > Quark_SecureBootPRM_330234_001.pdf section 4.5 details the concept of IMRs > quark-x1000-datasheet.pdf section 12.7.4 details the implementation of IMRs > in silicon. > > eSRAM flush, CPU Snoop, CPU SMM Mode, CPU non-SMM mode, RMU and PCIe Virtual > Channels (VC0 and VC1) can have individual read/write access masks applied > to them for a given memory region in Quark X1000. This enables IMRs to treat > each memory transaction type listed above on an individual basis and to > filter appropriately based on the IMR access mask for the memory region. > Quark supports eight IMRs. > > Since all of the DMA capable SoC components in the X1000 are mapped to VC0 > it is possible to define sections of memory as invalid for DMA write > operations originating from Ethernet, USB, SD and any other DMA capable > south-cluster component on VC0. Similarly it is possible to mark kernel > memory as non-SMM mode read/write only or to mark BIOS runtime memory as SMM > mode accessible only depending on the particular memory footprint on a given > system. > > On an IMR violation Quark SoC X1000 systems are configured to reset the > system, so ensuring that the IMR memory map is consistent with the EFI > provided memory map is critical to ensure no IMR violations reset the > system. > > The API for accessing IMRs is based on MTRR code but doesn't provide a /proc > or /sys interface to manipulate IMRs. Defining the size and extent of IMRs > is exclusively the domain of in-kernel code. > > Quark firmware sets up a series of locked IMRs around pieces of memory that > firmware owns such as ACPI runtime data. During boot a series of unlocked > IMRs are placed around items in memory to guarantee no DMA modification of > those items can take place. Grub also places an unlocked IMR around the > kernel boot-params data structure and compressed kernel image. It is > necessary for the kernel to tear down all unlocked IMRs in order to ensure > that the kernel's view of memory passed via the EFI memory map is consistent > with the IMR memory map. Without tearing down all unlocked IMRs on boot > transitory IMRs such as those used to protect the compressed kernel image > will cause IMR violations and system reboots. > > The IMR init code tears down all unlocked IMRs and sets a protective IMR > around the kernel .text and .rodata as one contiguous block. This sanitizes > the IMR memory map with respect to the EFI memory map and protects the > read-only portions of the kernel from unwarranted DMA access. >
Few nitpicks and comments below. > Signed-off-by: Bryan O'Donoghue <pure.lo...@nexus-software.ie> > --- > arch/x86/Kconfig | 25 ++ > arch/x86/Kconfig.debug | 13 + > arch/x86/include/asm/imr.h | 60 ++++ > arch/x86/kernel/Makefile | 1 + > arch/x86/kernel/imr.c | 681 > +++++++++++++++++++++++++++++++++++++++++++++ > 5 files changed, 780 insertions(+) > create mode 100644 arch/x86/include/asm/imr.h > create mode 100644 arch/x86/kernel/imr.c > > diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig > index ba397bd..5af669c 100644 > --- a/arch/x86/Kconfig > +++ b/arch/x86/Kconfig > @@ -526,6 +526,31 @@ config IOSF_MBI_DEBUG > > If you don't require the option or are in doubt, say N. > > +config IMR > + bool "Isolated Memory Region support" > + default n > + depends on IOSF_MBI > + ---help--- > + This option provides a means to manipulate Isolated Memory Regions. > + IMRs are a set of registers that define read and write access masks > + to prohibit certain system agents from accessing memory with 1 KiB > + granularity. > + > + IMRs make it possible to control read/write access to an address > + by hardware agents inside the SoC. Read and write masks can be > + defined for: > + - eSRAM flush > + - Dirty CPU snoop (write only) > + - RMU access > + - PCI Virtual Channel 0/Virtual Channel 1 > + - SMM mode > + - Non SMM mode > + > + Quark contains a set of eight IMR registers and makes use of those > + registers during its bootup process. > + > + If you are running on a Galileo/Quark say Y here. > + > config X86_RDC321X > bool "RDC R-321x SoC" > depends on X86_32 > diff --git a/arch/x86/Kconfig.debug b/arch/x86/Kconfig.debug > index 61bd2ad..be22820 100644 > --- a/arch/x86/Kconfig.debug > +++ b/arch/x86/Kconfig.debug > @@ -313,6 +313,19 @@ config DEBUG_NMI_SELFTEST > > If unsure, say N. > > +config DEBUG_IMR_SELFTEST > + bool "Isolated Memory Region self test" > + default n > + depends on IMR > + ---help--- > + This option enables automated sanity testing of the IMR code. > + Some simple tests are run to verify IMR bounds checking, alignment > + and overlapping. This option is really only useful if you are > + debugging an IMR memory map or are modifying the IMR code and want > to > + test your changes. > + > + If unsure say N. > + > config X86_DEBUG_STATIC_CPU_HAS > bool "Debug alternatives" > depends on DEBUG_KERNEL > diff --git a/arch/x86/include/asm/imr.h b/arch/x86/include/asm/imr.h > new file mode 100644 > index 0000000..b572a81 > --- /dev/null > +++ b/arch/x86/include/asm/imr.h > @@ -0,0 +1,60 @@ > +/* > + * imr.h: Isolated Memory Region API > + * > + * Copyright(c) 2013 Intel Corporation. > + * Copyright(c) 2015 Bryan O'Donoghue <pure.lo...@nexus-software.ie> > + * > + * This program is free software; you can redistribute it and/or > + * modify it under the terms of the GNU General Public License > + * as published by the Free Software Foundation; version 2 > + * of the License. > + */ > +#ifndef _IMR_H > +#define _IMR_H > + > +#include <linux/types.h> > + > +/* > + * IMR agent access mask bits > + * See section 12.7.4.7 from quark-x1000-datasheet.pdf for register > + * definitions What about dots at the end of sentences? > + */ > +#define IMR_ESRAM_FLUSH BIT(31) > +#define IMR_CPU_SNOOP BIT(30) /* Applicable only to write */ > +#define IMR_RMU BIT(29) > +#define IMR_VC1_SAI_ID3 BIT(15) > +#define IMR_VC1_SAI_ID2 BIT(14) > +#define IMR_VC1_SAI_ID1 BIT(13) > +#define IMR_VC1_SAI_ID0 BIT(12) > +#define IMR_VC0_SAI_ID3 BIT(11) > +#define IMR_VC0_SAI_ID2 BIT(10) > +#define IMR_VC0_SAI_ID1 BIT(9) > +#define IMR_VC0_SAI_ID0 BIT(8) > +#define IMR_CPU_0 BIT(1) /* SMM mode */ > +#define IMR_CPU BIT(0) /* Non SMM mode */ > +#define IMR_ACCESS_NONE 0 > + > +/* > + * Read/Write access-all bits here include some reserved bits > + * These are the values firmware uses and are accepted by hardware. > + * The kernel defines read/write access-all in the same was as firmware > + * in order to have a consistent and crisp definition across firmware, > + * bootloader and kernel > + */ > +#define IMR_READ_ACCESS_ALL 0xBFFFFFFF > +#define IMR_WRITE_ACCESS_ALL 0xFFFFFFFF > + > +/* Number of IMRs provided by Quark X1000 SoC */ > +#define QUARK_X1000_IMR_MAX 0x08 > +#define QUARK_X1000_IMR_REGBASE 0x40 > + > +/* IMR alignment bits - only bits 31:10 are checked for IMR validity */ > +#define IMR_ALIGN 0x400 > +#define IMR_MASK (IMR_ALIGN - 1) > + > +int imr_add_range(unsigned long base, unsigned long size, > + unsigned int rmask, unsigned int wmask, bool lock); > + > +int imr_remove_range(int reg, unsigned long base, unsigned long size); > + > +#endif /* _IMR_H */ > diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile > index 5d4502c..0252de5 100644 > --- a/arch/x86/kernel/Makefile > +++ b/arch/x86/kernel/Makefile > @@ -104,6 +104,7 @@ obj-$(CONFIG_EFI) += sysfb_efi.o > obj-$(CONFIG_PERF_EVENTS) += perf_regs.o > obj-$(CONFIG_TRACING) += tracepoint.o > obj-$(CONFIG_IOSF_MBI) += iosf_mbi.o > +obj-$(CONFIG_IMR) += imr.o > obj-$(CONFIG_PMC_ATOM) += pmc_atom.o > > ### > diff --git a/arch/x86/kernel/imr.c b/arch/x86/kernel/imr.c > new file mode 100644 > index 0000000..5d9bfc4 > --- /dev/null > +++ b/arch/x86/kernel/imr.c > @@ -0,0 +1,681 @@ > +/** > + * intel_imr.c > + * > + * Copyright(c) 2013 Intel Corporation. > + * Copyright(c) 2015 Bryan O'Donoghue <pure.lo...@nexus-software.ie> > + * > + * IMR registers define an isolated region of memory that can > + * be masked to prohibit certain system agents from accessing memory. > + * When a device behind a masked port performs an access - snooped or > + * not, an IMR may optionally prevent that transaction from changing > + * the state of memory or from getting correct data in response to the > + * operation. > + * > + * Write data will be dropped and reads will return 0xFFFFFFFF, the > + * system will reset and system BIOS will print out an error message to > + * inform the user that an IMR has been violated. > + * > + * This code is based on the Linux MTRR code and reference code from > + * Intel's Quark BSP EFI, Linux and grub code. > + * > + * See quark-x1000-datasheet.pdf for register definitions > + * > http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf > + */ > + > +#define pr_fmt(fmt) "imr: " fmt Maybe more usual #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt > + > +#include <asm-generic/sections.h> > +#include <asm/cpu_device_id.h> > +#include <asm/imr.h> > +#include <asm/iosf_mbi.h> > +#include <linux/debugfs.h> > +#include <linux/init.h> > +#include <linux/mm.h> > +#include <linux/module.h> > +#include <linux/platform_device.h> > +#include <linux/types.h> > + > +struct imr_device { > + struct dentry *file; > + bool init; > + struct mutex lock; > + int max_imr; > + int reg_base; > +}; > + > +static struct imr_device imr_dev; > + > +/* > + * IMR read/write mask control registers. > + * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for > + * bit definitions. > + * > + * addr_hi > + * 31 Lock bit > + * 30:24 Reserved > + * 23:2 1 KiB aligned lo address > + * 1:0 Reserved > + * > + * addr_hi > + * 31:24 Reserved > + * 23:2 1 KiB aligned hi address > + * 1:0 Reserved > + */ > +#define IMR_LOCK BIT(31) > + > +struct imr_regs { > + u32 addr_lo; > + u32 addr_hi; > + u32 rmask; > + u32 wmask; > +}; > + > +#define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32)) > +#define IMR_LOCK_OFF (IMR_NUM_REGS - 1) > +#define IMR_SHIFT 8 > +#define imr_to_phys(x) ((x) << IMR_SHIFT) > +#define phys_to_imr(x) ((x) >> IMR_SHIFT) > + > +/** > + * imr_enabled - true if an IMR is enabled false otherwise > + * > + * Determines if an IMR is enabled based on address range and read/write > + * mask. An IMR set with an address range set to zero and a read/write > + * access mask set to all is considered to be disabled. An IMR in any > + * other state - for example set to zero but without read/write access > + * all is considered to be enabled. This definition of disabled is how > + * firmware switches off an IMR and is maintained in kernel for > + * consistency. > + * > + * @imr: pointer to IMR descriptor > + * @return: true if IMR enabled false if disabled > + */ > +static int imr_enabled(struct imr_regs *imr) > +{ > + return (imr->rmask != IMR_READ_ACCESS_ALL || > + imr->wmask != IMR_WRITE_ACCESS_ALL || > + imr_to_phys(imr->addr_lo) || > + imr_to_phys(imr->addr_hi)); > +} > + > +/** > + * imr_read - read an IMR at a given index. > + * > + * Requires caller to hold imr mutex > + * > + * @imr_id: IMR entry to read > + * @imr: IMR structure representing address and access masks > + * @return: 0 on success or error code passed from mbi_iosf on failure > + */ > +static int imr_read(u32 imr_id, struct imr_regs *imr) > +{ > + u32 reg = imr_id * IMR_NUM_REGS + imr_dev.reg_base; > + int ret; > + > + ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ, > + reg++, &imr->addr_lo); > + if (ret) > + return ret; > + > + ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ, > + reg++, &imr->addr_hi); > + if (ret) > + return ret; > + > + ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ, > + reg++, &imr->rmask); > + if (ret) > + return ret; > + > + return iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ, > + reg, &imr->wmask); I would keep this in the same style like ret = if (ret) return ret; return 0; It might be easy to extend if needed, though it's a really minor change. > +} > + > +/** > + * imr_write - write an IMR at a given index. > + * > + * Requires caller to hold imr mutex > + * Note lock bits need to be written independently of address bits > + * > + * @imr_id: IMR entry to write > + * @imr: IMR structure representing address and access masks > + * @lock: indicates if the IMR lock bit should be applied > + * @return: 0 on success or error code passed from mbi_iosf on failure > + */ > +static int imr_write(u32 imr_id, struct imr_regs *imr, bool lock) > +{ > + unsigned long flags; > + u32 reg = imr_id * IMR_NUM_REGS + imr_dev.reg_base; > + int ret; > + > + local_irq_save(flags); > + > + ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, reg++, > + imr->addr_lo); > + if (ret) > + goto done; > + > + ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, > + reg++, imr->addr_hi); > + if (ret) > + goto done; > + > + ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, > + reg++, imr->rmask); > + if (ret) > + goto done; > + > + ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, > + reg, imr->wmask); Wouldn't be reg++ here as well? Below you substitute full offset which I think points just to next register. > + if (ret) > + goto done; > + > + /* Lock bit must be set separately to addr_lo address bits */ > + if (lock) { > + imr->addr_lo |= IMR_LOCK; > + ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, > + reg - IMR_LOCK_OFF, imr->addr_lo); > + } > + > + local_irq_restore(flags); > + return 0; > +done: > + /* > + * If writing to the IOSF failed then we're in an unknown state, > + * likely a very bad state. An IMR in an invalid state will almost > + * certainly lead to a memory access violation. > + */ > + local_irq_restore(flags); > + WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n", > + imr_to_phys(imr->addr_lo), > + imr_to_phys(imr->addr_hi) + IMR_MASK); Could it fit one line less? > + > + return ret; > +} > + > +#ifdef CONFIG_DEBUG_FS > +/** > + * imr_dbgfs_state_show > + * Print state of IMR registers > + * > + * @s: pointer to seq_file for output > + * @unused: unused parameter > + * @return: 0 on success or error code passed from mbi_iosf on failure > + */ > +static int imr_dbgfs_state_show(struct seq_file *s, void *unused) I didn't remembter if I told you, but please use s->private for the imr_dev pointer. Everywhere in debugfs calls and if possible in other functions as well. > +{ > + int i; > + struct imr_regs imr; > + int ret = -ENODEV; > + u32 size; > + > + mutex_lock(&imr_dev.lock); > + > + for (i = 0; i < imr_dev.max_imr; i++) { > + > + ret = imr_read(i, &imr); > + if (ret) > + break; > + > + /* > + * Remember to add IMR_ALIGN bytes to size to indicate the > + * inherent IMR_ALIGN size bytes contained in the masked away > + * lower ten bits > + */ > + size = imr_to_phys(imr.addr_hi) - imr_to_phys(imr.addr_lo) + > IMR_ALIGN; > + seq_printf(s, "imr%02i: base=0x%08x, end=0x%08x, size=0x%08x " > + "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i, > + imr_to_phys(imr.addr_lo), > + imr_enabled(&imr) ? imr_to_phys(imr.addr_hi) + > IMR_MASK : 0, > + imr_enabled(&imr) ? size : 0, > + imr.rmask, imr.wmask, > + imr_enabled(&imr) ? "enabled " : "disabled", > + imr.addr_lo & IMR_LOCK ? "locked" : "unlocked"); > + } > + > + mutex_unlock(&imr_dev.lock); > + > + return ret; > +} > + > +/** > + * imr_state_open > + * Debugfs open callback > + * > + * @inode: pointer to struct inode > + * @file: pointer to struct file > + * @return: result of single open > + */ > +static int imr_state_open(struct inode *inode, struct file *file) > +{ > + return single_open(file, imr_dbgfs_state_show, inode->i_private); > +} > + > +static const struct file_operations imr_state_ops = { > + .open = imr_state_open, > + .read = seq_read, > + .llseek = seq_lseek, > + .release = single_release, > +}; > + > +/** > + * imr_debugfs_register > + * Register debugfs hooks > + * > + * @imr: imr structure representing address and access masks > + * @return: 0 on success - errno on failure > + */ > +static int imr_debugfs_register(void) > +{ > + imr_dev.file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, > NULL, > + &imr_dev, &imr_state_ops); > + if (!imr_dev.file) > + return -ENODEV; > + > + return 0; > +} > + > +/** > + * imr_debugfs_unregister > + * Unregister debugfs hooks > + * > + * @imr: IMR structure representing address and access masks > + * @return: > + */ > +static void imr_debugfs_unregister(void) > +{ > + if (!imr_dev.file) > + return; Redundant check. I think I told you that already. > + > + debugfs_remove(imr_dev.file); > +} > +#endif /* CONFIG_DEBUG_FS */ > + > +/** > + * imr_check_range > + * Check the passed address range for an IMR is aligned > + * > + * @base: base address of intended IMR > + * @size: size of intended IMR > + * @return: zero on valid range -EINVAL on unaligned base/size > + */ > +static int imr_check_range(unsigned long base, unsigned long size) > +{ > + if ((base & IMR_MASK) || (size & IMR_MASK)) { > + pr_warn("base 0x%08lx size 0x%08lx must align to 1KiB\n", > + base, size); > + return -EINVAL; > + } > + return 0; > +} > + > +/** > + * imr_fixup_size - account for the IMR_ALIGN bytes that addr_hi appends > + * > + * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the > + * value in the register. We need to subtract IMR_ALIGN bytes from input > sizes > + * as a result > + * > + * @size: input size bytes > + * @return: reduced size > + */ > +static unsigned long imr_fixup_size(unsigned long size) > +{ > + return size - IMR_ALIGN; > +} > + > +/** > + * imr_address_overlap - detects an address overlap > + * > + * @addr: address to check against an existing IMR > + * @imr: imr being checked > + * @return: true for overlap false for no overlap > + */ > +static int imr_address_overlap(unsigned long addr, struct imr_regs *imr) > +{ > + return addr >= imr_to_phys(imr->addr_lo) && addr <= > imr_to_phys(imr->addr_hi); > +} > + > +/** > + * imr_add_range - add an Isolated Memory Region > + * > + * @base: physical base address of region aligned to 1KiB > + * @size: physical size of region in bytes must be aligned to 1KiB > + * @read_mask: read access mask > + * @write_mask: write access mask > + * @lock: indicates whether or not to permanently lock this region > + * @return: index of the IMR allocated or negative value indicating error > + */ > +int imr_add_range(unsigned long base, unsigned long size, > + unsigned int rmask, unsigned int wmask, bool lock) > +{ > + unsigned long end = base + size; > + int i; > + struct imr_regs imr; > + int reg; > + int ret; > + > + if (imr_dev.init == false) > + return -ENODEV; > + > + ret = imr_check_range(base, size); > + if (ret) > + return ret; > + > + if (size < IMR_ALIGN) > + return -EINVAL; > + > + /* Tweak the size value */ > + size = imr_fixup_size(size); > + > + mutex_lock(&imr_dev.lock); > + > + /* > + * Find a free IMR while checking for an existing overlapping range. > + * Note there's no restriction in silicon to prevent IMR overlaps. > + * For the sake of simplicity and ease in defining/debugging an IMR > + * memory map we exclude IMR overlaps. > + */ > + reg = -1; > + for (i = 0; i < imr_dev.max_imr; i++) { > + ret = imr_read(i, &imr); > + if (ret) > + goto done; > + > + /* Find overlap @ base or end of requested range */ > + if (imr_enabled(&imr)) { > + if (imr_address_overlap(base, &imr)) { > + ret = -EINVAL; > + goto done; > + } > + if (imr_address_overlap(end, &imr)) { > + ret = -EINVAL; > + goto done; > + } > + } else { > + reg = i; > + } > + } > + > + /* Error out if we have no free IMR entries */ > + if (reg == -1) { > + ret = -ENODEV; > + goto done; > + } > + > + pr_debug("IMR %d phys 0x%08lx-0x%08lx rmask 0x%08x wmask 0x%08x\n", > + reg, base, end, rmask, wmask); > + > + /* Allocate IMR */ > + imr.addr_lo = phys_to_imr(base); > + imr.addr_hi = phys_to_imr(end); > + imr.rmask = rmask; > + imr.wmask = wmask; > + > + ret = imr_write(reg, &imr, lock); > + > +done: > + mutex_unlock(&imr_dev.lock); > + return ret == 0 ? reg : ret; > +} > +EXPORT_SYMBOL(imr_add_range); > + > +/** > + * imr_remove_range - delete an Isolated Memory Region > + * > + * This function allows you to delete an IMR by it's index specified by reg > or > + * by address range specified by base and size respectively. If you specify > an > + * index on it's own the base and size parameters are ignored. > + * imr_remove_range(0, size, base); delete IMR at index 0 base/size ignored > + * imr_remove_range(-1, base, size); delete IMR from base to base+size > + * > + * @reg: imr index to remove > + * @base: physical base address of region aligned to 4k > + * @size: physical size of region in bytes > + * @return: -EINVAL on invalid range or out or range id > + * -ENODEV if reg is valid but no IMR exists or is locked > + * 0 on success > + */ > +int imr_remove_range(int reg, unsigned long base, unsigned long size) > +{ > + struct imr_regs imr; > + int found = 0, i, ret = 0; > + unsigned long max = base + size; > + > + if (imr_dev.init == false) > + return -ENODEV; > + > + if (imr_check_range(base, size)) > + return -EINVAL; > + > + if (reg >= imr_dev.max_imr) > + return -EINVAL; > + > + /* Tweak the size value */ > + size = imr_fixup_size(size); > + > + mutex_lock(&imr_dev.lock); > + > + if (reg >= 0) { > + /* If a specific IMR is given try to use it */ > + ret = imr_read(reg, &imr); > + if (ret) > + goto done; > + > + if (!imr_enabled(&imr) || imr.addr_lo & IMR_LOCK) { > + ret = -ENODEV; > + goto done; > + } > + found = 1; > + > + } else { > + /* Search for match based on address range */ > + for (i = 0; i < imr_dev.max_imr; i++) { > + ret = imr_read(reg, &imr); > + if (ret) > + goto done; > + > + if (!imr_enabled(&imr) || imr.addr_lo & IMR_LOCK) > + continue; > + > + if ((imr_to_phys(imr.addr_lo) == base) && > + (imr_to_phys(imr.addr_hi) == max)) { > + found = 1; > + reg = i; > + break; > + } > + } > + } > + > + if (found == 0) { > + ret = -ENODEV; > + goto done; > + } > + > + /* Tear down the IMR */ > + imr.addr_lo = 0; > + imr.addr_hi = 0; > + imr.rmask = IMR_READ_ACCESS_ALL; > + imr.wmask = IMR_WRITE_ACCESS_ALL; > + > + ret = imr_write(reg, &imr, false); > + > +done: > + mutex_unlock(&imr_dev.lock); > + return ret; > +} > +EXPORT_SYMBOL(imr_remove_range); > + > +#ifdef CONFIG_DEBUG_IMR_SELFTEST > + > +#define SELFTEST "imr: self_test " > + > +/** > + * imr_self_test_result - Print result string for self test > + * > + * @res: result code - true if test passed false otherwise > + * @fmt: format string > + * ... variadic argument list > + */ > +static void __init imr_self_test_result(int res, const char *fmt, ...) > +{ > + va_list vlist; > + > + va_start(vlist, fmt); > + if (res) > + printk(KERN_INFO SELFTEST "pass "); > + else > + printk(KERN_ERR SELFTEST "fail "); > + vprintk(fmt, vlist); > + va_end(vlist); > +} > + > +#undef SELFTEST > + > +/** > + * imr_self_test > + * > + * Verify IMR self_test with some simple tests to verify overlap, > + * zero sized allocations and 1 KiB sized areas. > + * > + * @base: physical base address of the kernel text section > + * @size: extent of kernel memory to be covered from &_text to > &__end_rodata > + */ > +static void __init imr_self_test(unsigned long base, unsigned long size) > +{ > + const char *fmt_over = "overlapped IMR @ (0x%08lx - 0x%08lx)\n"; > + int idx; > + > + /* Test zero zero */ > + idx = imr_add_range(0, 0, 0, 0, false); > + imr_self_test_result(idx < 0, "zero sized IMR\n"); > + > + /* Test exact overlap */ > + idx = imr_add_range(base, size, IMR_CPU, IMR_CPU, false); > + imr_self_test_result(idx < 0, fmt_over, __va(base), __va(base + > size)); > + > + /* Test overlap with base inside of existing */ > + base += size - IMR_ALIGN; > + idx = imr_add_range(base, size, IMR_CPU, IMR_CPU, false); > + imr_self_test_result(idx < 0, fmt_over, __va(base), __va(base + > size)); > + > + /* Test overlap with end inside of existing */ > + base -= size + IMR_ALIGN * 2; > + idx = imr_add_range(base, size, IMR_CPU, IMR_CPU, false); > + imr_self_test_result(idx < 0, fmt_over, __va(base), __va(base + > size)); > + > + /* Test 1 KiB works */ > + idx = imr_add_range(0, IMR_ALIGN, IMR_READ_ACCESS_ALL, > + IMR_WRITE_ACCESS_ALL, false); > + imr_self_test_result(idx >= 0, "1KiB IMR @ 0x00000000\n"); > + > + /* Tear-tow 1 KiB if previous was successful */ > + if (idx >= 0) { > + idx = imr_remove_range(idx, 0, 0); > + imr_self_test_result(idx == 0, "teardown 1KiB @ > 0x00000000\n"); > + } > +} > +#endif /* CONFIG_DEBUG_IMR_SELFTEST */ > + > +/** > + * imr_fixup_memmap - Tear down IMRs used during bootup. > + * > + * BIOS and Grub both setup IMRs around compressed kernel, initrd memory > + * that need to be removed before the kernel hands out one of the IMR > + * encased addresses to a downstream DMA agent such as the SD or Ethernet. > + * IMRs on Galileo are setup to immediately reset the system on violation. > + * As a result if you're running a root filesystem from SD - you'll need > + * the boot-time IMRs torn down or you'll find seemingly random resets when > + * using your filesystem. > + */ > +static void __init imr_fixup_memmap(void) > +{ > + unsigned long base = virt_to_phys(&_text); > + unsigned long size = virt_to_phys(&__end_rodata) - base; Shouldn't be phys_addr_t ? Oh, It might be good for all address parameters in the introduced API. > + int i, ret; > + > + /* Tear down all existing unlocked IMRs */ > + for (i = 0; i < imr_dev.max_imr; i++) > + imr_remove_range(i, 0, 0); > + > + /* > + * Setup a locked IMR around the physical extent of the kernel > + * from the beginning of the .text secton to the end of the > + * .rodata section. > + * > + * This behaviour relies on the kernel .text and .rodata > + * sections being physically contiguous and .rodata ending on 1 > + * KiB aligned boundary - such as a page boundary. Linker script > + * The definition of this memory map is in: > + * arch/x86/kernel/vmlinux.lds > + * .text begin = &_stext > + * .rodata end = &__end_rodata - aligned to 4KiB > + */ > + ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true); > + if (ret < 0) > + pr_err("unable to setup IMR for kernel: (%p - %p)\n", > + &_text, &__end_rodata); > + else > + pr_info("protecting kernel .text - .rodata: %ldk (%p - %p)\n", > + size / 1024, &_text, &__end_rodata); size >> 10 Or, jfyi, string_helpers.c :: string_get_size(), though it prints to the buffer. > + > +#ifdef CONFIG_DEBUG_IMR_SELFTEST > + /* Run optional self test */ > + imr_self_test(base, size); > +#endif I think it makes sense to move this piece to the init. I don't see what is exceptional in this function that test belongs here. > +} > + > +static const struct x86_cpu_id imr_ids[] __initconst = { > + { X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000 */ > + {} > +}; > +MODULE_DEVICE_TABLE(x86cpu, imr_ids); > + > +/** > + * imr_probe - entry point for IMR driver > + * > + * return: -ENODEV for no IMR support 0 if good to go > + */ > +static int __init imr_init(void) > +{ > + int ret; > + > + if (!x86_match_cpu(imr_ids) || !iosf_mbi_available()) > + return -ENODEV; > + > +#ifdef CONFIG_DEBUG_FS > + ret = imr_debugfs_register(); > + if (ret != 0) > + return ret; It's non-fatal error. Thus, if (ret) pr_warn("DebugFS wasn't initialized\n"); Move it after we have imr_dev in place and supply it to debugfs as a private pointer. > +#endif > + > + imr_dev.max_imr = QUARK_X1000_IMR_MAX; > + imr_dev.reg_base = QUARK_X1000_IMR_REGBASE; > + > + mutex_init(&imr_dev.lock); > + > + imr_dev.init = true; > + imr_fixup_memmap(); > + > + return 0; > +} > + > +/** > + * imr_exit - exit point for IMR code > + * Deregisters debugfs, leave IMR state as-is. > + * > + * return: > + */ > +static void __exit imr_exit(void) > +{ > +#ifdef CONFIG_DEBUG_FS I suspect you may remove all those ifdefs and compiler should shrink not used code since debugfs has the stubs. > + imr_debugfs_unregister(); > +#endif > +} > + > +module_init(imr_init); > +module_exit(imr_exit); > + > +MODULE_AUTHOR("Bryan O'Donoghue <pure.lo...@nexus-software.ie>"); > +MODULE_DESCRIPTION("Intel Isolated Memory Region driver"); > +MODULE_LICENSE("GPL"); > -- > 1.9.1 > -- With Best Regards, Andy Shevchenko -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majord...@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/