Switching merge_across_nodes after running KSM is liable to oops on stale
nodes still left over from the previous stable tree.  It's not something
that people will often want to do, but it would be lame to demand a reboot
when they're trying to determine which merge_across_nodes setting is best.

How can this happen?  We only permit switching merge_across_nodes when
pages_shared is 0, and usually set run 2 to force that beforehand, which
ought to unmerge everything: yet oopses still occur when you then run 1.

Three causes:

1. The old stable tree (built according to the inverse merge_across_nodes)
has not been fully torn down.  A stable node lingers until get_ksm_page()
notices that the page it references no longer references it: but the page
is not necessarily freed as soon as expected, particularly when swapcache.

Fix this with a pass through the old stable tree, applying get_ksm_page()
to each of the remaining nodes (most found stale and removed immediately),
with forced removal of any left over.  Unless the page is still mapped:
I've not seen that case, it shouldn't occur, but better to WARN_ON_ONCE
and EBUSY than BUG.

2. __ksm_enter() has a nice little optimization, to insert the new mm
just behind ksmd's cursor, so there's a full pass for it to stabilize
(or be removed) before ksmd addresses it.  Nice when ksmd is running,
but not so nice when we're trying to unmerge all mms: we were missing
those mms forked and inserted behind the unmerge cursor.  Easily fixed
by inserting at the end when KSM_RUN_UNMERGE.

3. It is possible for a KSM page to be faulted back from swapcache into
an mm, just after unmerge_and_remove_all_rmap_items() scanned past it.
Fix this by copying on fault when KSM_RUN_UNMERGE: but that is private
to ksm.c, so dissolve the distinction between ksm_might_need_to_copy()
and ksm_does_need_to_copy(), doing it all in the one call into ksm.c.

A long outstanding, unrelated bugfix sneaks in with that third fix:
ksm_does_need_to_copy() would copy from a !PageUptodate page (implying
I/O error when read in from swap) to a page which it then marks Uptodate.
Fix this case by not copying, letting do_swap_page() discover the error.

Signed-off-by: Hugh Dickins <hu...@google.com>
---
 include/linux/ksm.h |   18 ++-------
 mm/ksm.c            |   83 +++++++++++++++++++++++++++++++++++++++---
 mm/memory.c         |   19 ++++-----
 3 files changed, 92 insertions(+), 28 deletions(-)

--- mmotm.orig/include/linux/ksm.h      2013-01-25 14:27:58.220193250 -0800
+++ mmotm/include/linux/ksm.h   2013-01-25 14:37:00.764206145 -0800
@@ -16,9 +16,6 @@
 struct stable_node;
 struct mem_cgroup;
 
-struct page *ksm_does_need_to_copy(struct page *page,
-                       struct vm_area_struct *vma, unsigned long address);
-
 #ifdef CONFIG_KSM
 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
                unsigned long end, int advice, unsigned long *vm_flags);
@@ -73,15 +70,8 @@ static inline void set_page_stable_node(
  * We'd like to make this conditional on vma->vm_flags & VM_MERGEABLE,
  * but what if the vma was unmerged while the page was swapped out?
  */
-static inline int ksm_might_need_to_copy(struct page *page,
-                       struct vm_area_struct *vma, unsigned long address)
-{
-       struct anon_vma *anon_vma = page_anon_vma(page);
-
-       return anon_vma &&
-               (anon_vma->root != vma->anon_vma->root ||
-                page->index != linear_page_index(vma, address));
-}
+struct page *ksm_might_need_to_copy(struct page *page,
+                       struct vm_area_struct *vma, unsigned long address);
 
 int page_referenced_ksm(struct page *page,
                        struct mem_cgroup *memcg, unsigned long *vm_flags);
@@ -113,10 +103,10 @@ static inline int ksm_madvise(struct vm_
        return 0;
 }
 
-static inline int ksm_might_need_to_copy(struct page *page,
+static inline struct page *ksm_might_need_to_copy(struct page *page,
                        struct vm_area_struct *vma, unsigned long address)
 {
-       return 0;
+       return page;
 }
 
 static inline int page_referenced_ksm(struct page *page,
--- mmotm.orig/mm/ksm.c 2013-01-25 14:36:58.856206099 -0800
+++ mmotm/mm/ksm.c      2013-01-25 14:37:00.768206145 -0800
@@ -644,6 +644,57 @@ static int unmerge_ksm_pages(struct vm_a
 /*
  * Only called through the sysfs control interface:
  */
+static int remove_stable_node(struct stable_node *stable_node)
+{
+       struct page *page;
+       int err;
+
+       page = get_ksm_page(stable_node, true);
+       if (!page) {
+               /*
+                * get_ksm_page did remove_node_from_stable_tree itself.
+                */
+               return 0;
+       }
+
+       if (WARN_ON_ONCE(page_mapped(page)))
+               err = -EBUSY;
+       else {
+               /*
+                * This page might be in a pagevec waiting to be freed,
+                * or it might be PageSwapCache (perhaps under writeback),
+                * or it might have been removed from swapcache a moment ago.
+                */
+               set_page_stable_node(page, NULL);
+               remove_node_from_stable_tree(stable_node);
+               err = 0;
+       }
+
+       unlock_page(page);
+       put_page(page);
+       return err;
+}
+
+static int remove_all_stable_nodes(void)
+{
+       struct stable_node *stable_node;
+       int nid;
+       int err = 0;
+
+       for (nid = 0; nid < nr_node_ids; nid++) {
+               while (root_stable_tree[nid].rb_node) {
+                       stable_node = rb_entry(root_stable_tree[nid].rb_node,
+                                               struct stable_node, node);
+                       if (remove_stable_node(stable_node)) {
+                               err = -EBUSY;
+                               break;  /* proceed to next nid */
+                       }
+                       cond_resched();
+               }
+       }
+       return err;
+}
+
 static int unmerge_and_remove_all_rmap_items(void)
 {
        struct mm_slot *mm_slot;
@@ -691,6 +742,8 @@ static int unmerge_and_remove_all_rmap_i
                }
        }
 
+       /* Clean up stable nodes, but don't worry if some are still busy */
+       remove_all_stable_nodes();
        ksm_scan.seqnr = 0;
        return 0;
 
@@ -1586,11 +1639,19 @@ int __ksm_enter(struct mm_struct *mm)
        spin_lock(&ksm_mmlist_lock);
        insert_to_mm_slots_hash(mm, mm_slot);
        /*
-        * Insert just behind the scanning cursor, to let the area settle
+        * When KSM_RUN_MERGE (or KSM_RUN_STOP),
+        * insert just behind the scanning cursor, to let the area settle
         * down a little; when fork is followed by immediate exec, we don't
         * want ksmd to waste time setting up and tearing down an rmap_list.
+        *
+        * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
+        * scanning cursor, otherwise KSM pages in newly forked mms will be
+        * missed: then we might as well insert at the end of the list.
         */
-       list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
+       if (ksm_run & KSM_RUN_UNMERGE)
+               list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
+       else
+               list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
        spin_unlock(&ksm_mmlist_lock);
 
        set_bit(MMF_VM_MERGEABLE, &mm->flags);
@@ -1640,11 +1701,25 @@ void __ksm_exit(struct mm_struct *mm)
        }
 }
 
-struct page *ksm_does_need_to_copy(struct page *page,
+struct page *ksm_might_need_to_copy(struct page *page,
                        struct vm_area_struct *vma, unsigned long address)
 {
+       struct anon_vma *anon_vma = page_anon_vma(page);
        struct page *new_page;
 
+       if (PageKsm(page)) {
+               if (page_stable_node(page) &&
+                   !(ksm_run & KSM_RUN_UNMERGE))
+                       return page;    /* no need to copy it */
+       } else if (!anon_vma) {
+               return page;            /* no need to copy it */
+       } else if (anon_vma->root == vma->anon_vma->root &&
+                page->index == linear_page_index(vma, address)) {
+               return page;            /* still no need to copy it */
+       }
+       if (!PageUptodate(page))
+               return page;            /* let do_swap_page report the error */
+
        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
        if (new_page) {
                copy_user_highpage(new_page, page, address, vma);
@@ -2024,7 +2099,7 @@ static ssize_t merge_across_nodes_store(
 
        mutex_lock(&ksm_thread_mutex);
        if (ksm_merge_across_nodes != knob) {
-               if (ksm_pages_shared)
+               if (ksm_pages_shared || remove_all_stable_nodes())
                        err = -EBUSY;
                else
                        ksm_merge_across_nodes = knob;
--- mmotm.orig/mm/memory.c      2013-01-25 14:27:58.220193250 -0800
+++ mmotm/mm/memory.c   2013-01-25 14:37:00.768206145 -0800
@@ -2994,17 +2994,16 @@ static int do_swap_page(struct mm_struct
        if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
                goto out_page;
 
-       if (ksm_might_need_to_copy(page, vma, address)) {
-               swapcache = page;
-               page = ksm_does_need_to_copy(page, vma, address);
-
-               if (unlikely(!page)) {
-                       ret = VM_FAULT_OOM;
-                       page = swapcache;
-                       swapcache = NULL;
-                       goto out_page;
-               }
+       swapcache = page;
+       page = ksm_might_need_to_copy(page, vma, address);
+       if (unlikely(!page)) {
+               ret = VM_FAULT_OOM;
+               page = swapcache;
+               swapcache = NULL;
+               goto out_page;
        }
+       if (page == swapcache)
+               swapcache = NULL;
 
        if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
                ret = VM_FAULT_OOM;
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majord...@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to