On Fri, Apr 25, 2025 at 1:28 AM Vlastimil Babka <vba...@suse.cz> wrote: > > Add functions for efficient guaranteed allocations e.g. in a critical > section that cannot sleep, when the exact number of allocations is not > known beforehand, but an upper limit can be calculated. > > kmem_cache_prefill_sheaf() returns a sheaf containing at least given > number of objects. > > kmem_cache_alloc_from_sheaf() will allocate an object from the sheaf > and is guaranteed not to fail until depleted. > > kmem_cache_return_sheaf() is for giving the sheaf back to the slab > allocator after the critical section. This will also attempt to refill > it to cache's sheaf capacity for better efficiency of sheaves handling, > but it's not stricly necessary to succeed. > > kmem_cache_refill_sheaf() can be used to refill a previously obtained > sheaf to requested size. If the current size is sufficient, it does > nothing. If the requested size exceeds cache's sheaf_capacity and the > sheaf's current capacity, the sheaf will be replaced with a new one, > hence the indirect pointer parameter. > > kmem_cache_sheaf_size() can be used to query the current size. > > The implementation supports requesting sizes that exceed cache's > sheaf_capacity, but it is not efficient - such "oversize" sheaves are > allocated fresh in kmem_cache_prefill_sheaf() and flushed and freed > immediately by kmem_cache_return_sheaf(). kmem_cache_refill_sheaf() > might be especially ineffective when replacing a sheaf with a new one of > a larger capacity. It is therefore better to size cache's > sheaf_capacity accordingly to make oversize sheaves exceptional. > > CONFIG_SLUB_STATS counters are added for sheaf prefill and return > operations. A prefill or return is considered _fast when it is able to > grab or return a percpu spare sheaf (even if the sheaf needs a refill to > satisfy the request, as those should amortize over time), and _slow > otherwise (when the barn or even sheaf allocation/freeing has to be > involved). sheaf_prefill_oversize is provided to determine how many > prefills were oversize (counter for oversize returns is not necessary as > all oversize refills result in oversize returns). > > When slub_debug is enabled for a cache with sheaves, no percpu sheaves > exist for it, but the prefill functionality is still provided simply by > all prefilled sheaves becoming oversize. If percpu sheaves are not > created for a cache due to not passing the sheaf_capacity argument on > cache creation, the prefills also work through oversize sheaves, but > there's a WARN_ON_ONCE() to indicate the omission. > > Signed-off-by: Vlastimil Babka <vba...@suse.cz> > Reviewed-by: Suren Baghdasaryan <sur...@google.com> > --- > include/linux/slab.h | 16 ++++ > mm/slub.c | 265 > +++++++++++++++++++++++++++++++++++++++++++++++++++ > 2 files changed, 281 insertions(+) > > diff --git a/include/linux/slab.h b/include/linux/slab.h > index > 4cb495d55fc58c70a992ee4782d7990ce1c55dc6..b0a9ba33abae22bf38cbf1689e3c08bb0b05002f > 100644 > --- a/include/linux/slab.h > +++ b/include/linux/slab.h > @@ -829,6 +829,22 @@ void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, > gfp_t flags, > int node) __assume_slab_alignment __malloc; > #define kmem_cache_alloc_node(...) > alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__)) > > +struct slab_sheaf * > +kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size); > + > +int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp, > + struct slab_sheaf **sheafp, unsigned int size); > + > +void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp, > + struct slab_sheaf *sheaf); > + > +void *kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *cachep, gfp_t > gfp, > + struct slab_sheaf *sheaf) __assume_slab_alignment > __malloc; > +#define kmem_cache_alloc_from_sheaf(...) \ > + > alloc_hooks(kmem_cache_alloc_from_sheaf_noprof(__VA_ARGS__)) > + > +unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf); > + > /* > * These macros allow declaring a kmem_buckets * parameter alongside size, > which > * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of > call > diff --git a/mm/slub.c b/mm/slub.c > index > 6f31a27b5d47fa6621fa8af6d6842564077d4b60..724266fdd996c091f1f0b34012c5179f17dfa422 > 100644 > --- a/mm/slub.c > +++ b/mm/slub.c > @@ -384,6 +384,11 @@ enum stat_item { > BARN_GET_FAIL, /* Failed to get full sheaf from barn */ > BARN_PUT, /* Put full sheaf to barn */ > BARN_PUT_FAIL, /* Failed to put full sheaf to barn */ > + SHEAF_PREFILL_FAST, /* Sheaf prefill grabbed the spare sheaf */ > + SHEAF_PREFILL_SLOW, /* Sheaf prefill found no spare sheaf */ > + SHEAF_PREFILL_OVERSIZE, /* Allocation of oversize sheaf for prefill */ > + SHEAF_RETURN_FAST, /* Sheaf return reattached spare sheaf */ > + SHEAF_RETURN_SLOW, /* Sheaf return could not reattach spare */ > NR_SLUB_STAT_ITEMS > }; > > @@ -445,6 +450,8 @@ struct slab_sheaf { > union { > struct rcu_head rcu_head; > struct list_head barn_list; > + /* only used for prefilled sheafs */ > + unsigned int capacity; > }; > struct kmem_cache *cache; > unsigned int size; > @@ -2795,6 +2802,30 @@ static void barn_put_full_sheaf(struct node_barn > *barn, struct slab_sheaf *sheaf > spin_unlock_irqrestore(&barn->lock, flags); > } > > +static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn > *barn) > +{ > + struct slab_sheaf *sheaf = NULL; > + unsigned long flags; > + > + spin_lock_irqsave(&barn->lock, flags); > + > + if (barn->nr_full) { > + sheaf = list_first_entry(&barn->sheaves_full, struct > slab_sheaf, > + barn_list); > + list_del(&sheaf->barn_list); > + barn->nr_full--; > + } else if (barn->nr_empty) { > + sheaf = list_first_entry(&barn->sheaves_empty, > + struct slab_sheaf, barn_list); > + list_del(&sheaf->barn_list); > + barn->nr_empty--; > + } > + > + spin_unlock_irqrestore(&barn->lock, flags); > + > + return sheaf; > +} > + > /* > * If a full sheaf is available, return it and put the supplied empty one to > * barn. We ignore the limit on empty sheaves as the number of sheaves > doesn't > @@ -4905,6 +4936,230 @@ void *kmem_cache_alloc_node_noprof(struct kmem_cache > *s, gfp_t gfpflags, int nod > } > EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); > > +/* > + * returns a sheaf that has least the requested size
s/least/at least ? > + * when prefilling is needed, do so with given gfp flags > + * > + * return NULL if sheaf allocation or prefilling failed > + */ > +struct slab_sheaf * > +kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size) > +{ > + struct slub_percpu_sheaves *pcs; > + struct slab_sheaf *sheaf = NULL; > + > + if (unlikely(size > s->sheaf_capacity)) { > + > + /* > + * slab_debug disables cpu sheaves intentionally so all > + * prefilled sheaves become "oversize" and we give up on > + * performance for the debugging. > + * Creating a cache without sheaves and then requesting a > + * prefilled sheaf is however not expected, so warn. > + */ > + WARN_ON_ONCE(s->sheaf_capacity == 0 && > + !(s->flags & SLAB_DEBUG_FLAGS)); > + > + sheaf = kzalloc(struct_size(sheaf, objects, size), gfp); > + if (!sheaf) > + return NULL; > + > + stat(s, SHEAF_PREFILL_OVERSIZE); > + sheaf->cache = s; > + sheaf->capacity = size; > + > + if (!__kmem_cache_alloc_bulk(s, gfp, size, > + &sheaf->objects[0])) { > + kfree(sheaf); Not sure if we should have SHEAF_PREFILL_OVERSIZE_FAIL accounting as well here. > + return NULL; > + } > + > + sheaf->size = size; > + > + return sheaf; > + } > + > + local_lock(&s->cpu_sheaves->lock); > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + if (pcs->spare) { > + sheaf = pcs->spare; > + pcs->spare = NULL; > + stat(s, SHEAF_PREFILL_FAST); > + } else { > + stat(s, SHEAF_PREFILL_SLOW); > + sheaf = barn_get_full_or_empty_sheaf(pcs->barn); > + if (sheaf && sheaf->size) > + stat(s, BARN_GET); > + else > + stat(s, BARN_GET_FAIL); > + } > + > + local_unlock(&s->cpu_sheaves->lock); > + > + > + if (!sheaf) > + sheaf = alloc_empty_sheaf(s, gfp); > + > + if (sheaf && sheaf->size < size) { > + if (refill_sheaf(s, sheaf, gfp)) { > + sheaf_flush_unused(s, sheaf); > + free_empty_sheaf(s, sheaf); > + sheaf = NULL; > + } > + } > + > + if (sheaf) > + sheaf->capacity = s->sheaf_capacity; > + > + return sheaf; > +} > + > +/* > + * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf() > + * > + * If the sheaf cannot simply become the percpu spare sheaf, but there's > space > + * for a full sheaf in the barn, we try to refill the sheaf back to the > cache's > + * sheaf_capacity to avoid handling partially full sheaves. > + * > + * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, > the > + * sheaf is instead flushed and freed. > + */ > +void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp, > + struct slab_sheaf *sheaf) > +{ > + struct slub_percpu_sheaves *pcs; > + bool refill = false; > + struct node_barn *barn; > + > + if (unlikely(sheaf->capacity != s->sheaf_capacity)) { > + sheaf_flush_unused(s, sheaf); > + kfree(sheaf); > + return; > + } > + > + local_lock(&s->cpu_sheaves->lock); > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + if (!pcs->spare) { > + pcs->spare = sheaf; > + sheaf = NULL; > + stat(s, SHEAF_RETURN_FAST); > + } else if (data_race(pcs->barn->nr_full) < MAX_FULL_SHEAVES) { > + barn = pcs->barn; > + refill = true; > + } > + > + local_unlock(&s->cpu_sheaves->lock); > + > + if (!sheaf) > + return; > + > + stat(s, SHEAF_RETURN_SLOW); > + > + /* > + * if the barn is full of full sheaves or we fail to refill the sheaf, > + * simply flush and free it > + */ > + if (!refill || refill_sheaf(s, sheaf, gfp)) { > + sheaf_flush_unused(s, sheaf); > + free_empty_sheaf(s, sheaf); > + return; > + } > + > + /* we racily determined the sheaf would fit, so now force it */ > + barn_put_full_sheaf(barn, sheaf); > + stat(s, BARN_PUT); > +} > + > +/* > + * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least > + * the given size > + * > + * the sheaf might be replaced by a new one when requesting more than > + * s->sheaf_capacity objects if such replacement is necessary, but the refill > + * fails (returning -ENOMEM), the existing sheaf is left intact > + * > + * In practice we always refill to full sheaf's capacity. > + */ > +int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp, > + struct slab_sheaf **sheafp, unsigned int size) > +{ > + struct slab_sheaf *sheaf; > + > + /* > + * TODO: do we want to support *sheaf == NULL to be equivalent of > + * kmem_cache_prefill_sheaf() ? > + */ > + if (!sheafp || !(*sheafp)) > + return -EINVAL; > + > + sheaf = *sheafp; > + if (sheaf->size >= size) > + return 0; > + > + if (likely(sheaf->capacity >= size)) { > + if (likely(sheaf->capacity == s->sheaf_capacity)) > + return refill_sheaf(s, sheaf, gfp); > + > + if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - > sheaf->size, > + &sheaf->objects[sheaf->size])) { > + return -ENOMEM; > + } > + sheaf->size = sheaf->capacity; > + > + return 0; > + } > + > + /* > + * We had a regular sized sheaf and need an oversize one, or we had an > + * oversize one already but need a larger one now. > + * This should be a very rare path so let's not complicate it. > + */ > + sheaf = kmem_cache_prefill_sheaf(s, gfp, size); > + if (!sheaf) > + return -ENOMEM; > + > + kmem_cache_return_sheaf(s, gfp, *sheafp); > + *sheafp = sheaf; > + return 0; > +} > + > +/* > + * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf() > + * > + * Guaranteed not to fail as many allocations as was the requested size. > + * After the sheaf is emptied, it fails - no fallback to the slab cache > itself. > + * > + * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT > + * memcg charging is forced over limit if necessary, to avoid failure. > + */ > +void * > +kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp, > + struct slab_sheaf *sheaf) > +{ > + void *ret = NULL; > + bool init; > + > + if (sheaf->size == 0) > + goto out; > + > + ret = sheaf->objects[--sheaf->size]; > + > + init = slab_want_init_on_alloc(gfp, s); > + > + /* add __GFP_NOFAIL to force successful memcg charging */ > + slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, > s->object_size); > +out: > + trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE); > + > + return ret; > +} > + > +unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf) > +{ > + return sheaf->size; > +} > /* > * To avoid unnecessary overhead, we pass through large allocation requests > * directly to the page allocator. We use __GFP_COMP, because we will need to > @@ -8423,6 +8678,11 @@ STAT_ATTR(BARN_GET, barn_get); > STAT_ATTR(BARN_GET_FAIL, barn_get_fail); > STAT_ATTR(BARN_PUT, barn_put); > STAT_ATTR(BARN_PUT_FAIL, barn_put_fail); > +STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast); > +STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow); > +STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize); > +STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast); > +STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow); > #endif /* CONFIG_SLUB_STATS */ > > #ifdef CONFIG_KFENCE > @@ -8523,6 +8783,11 @@ static struct attribute *slab_attrs[] = { > &barn_get_fail_attr.attr, > &barn_put_attr.attr, > &barn_put_fail_attr.attr, > + &sheaf_prefill_fast_attr.attr, > + &sheaf_prefill_slow_attr.attr, > + &sheaf_prefill_oversize_attr.attr, > + &sheaf_return_fast_attr.attr, > + &sheaf_return_slow_attr.attr, > #endif > #ifdef CONFIG_FAILSLAB > &failslab_attr.attr, > > -- > 2.49.0 >