Extend the sheaf infrastructure for more efficient kfree_rcu() handling.
For caches with sheaves, on each cpu maintain a rcu_free sheaf in
addition to main and spare sheaves.

kfree_rcu() operations will try to put objects on this sheaf. Once full,
the sheaf is detached and submitted to call_rcu() with a handler that
will try to put it in the barn, or flush to slab pages using bulk free,
when the barn is full. Then a new empty sheaf must be obtained to put
more objects there.

It's possible that no free sheaves are available to use for a new
rcu_free sheaf, and the allocation in kfree_rcu() context can only use
GFP_NOWAIT and thus may fail. In that case, fall back to the existing
kfree_rcu() implementation.

Expected advantages:
- batching the kfree_rcu() operations, that could eventually replace the
  existing batching
- sheaves can be reused for allocations via barn instead of being
  flushed to slabs, which is more efficient
  - this includes cases where only some cpus are allowed to process rcu
    callbacks (Android)

Possible disadvantage:
- objects might be waiting for more than their grace period (it is
  determined by the last object freed into the sheaf), increasing memory
  usage - but the existing batching does that too.

Only implement this for CONFIG_KVFREE_RCU_BATCHED as the tiny
implementation favors smaller memory footprint over performance.

Add CONFIG_SLUB_STATS counters free_rcu_sheaf and free_rcu_sheaf_fail to
count how many kfree_rcu() used the rcu_free sheaf successfully and how
many had to fall back to the existing implementation.

Signed-off-by: Vlastimil Babka <vba...@suse.cz>
---
 mm/slab.h        |   3 +
 mm/slab_common.c |  24 ++++++++
 mm/slub.c        | 183 ++++++++++++++++++++++++++++++++++++++++++++++++++++++-
 3 files changed, 208 insertions(+), 2 deletions(-)

diff --git a/mm/slab.h b/mm/slab.h
index 
1980330c2fcb4a4613a7e4f7efc78b349993fd89..ddf1e4bcba734dccbf67e83bdbab3ca7272f540e
 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -459,6 +459,9 @@ static inline bool is_kmalloc_normal(struct kmem_cache *s)
        return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT));
 }
 
+bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj);
+
+/* Legal flag mask for kmem_cache_create(), for various configurations */
 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
                         SLAB_CACHE_DMA32 | SLAB_PANIC | \
                         SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \
diff --git a/mm/slab_common.c b/mm/slab_common.c
index 
4f295bdd2d42355af6311a799955301005f8a532..6c3b90f03cb79b57f426824450f576a977d85c53
 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -1608,6 +1608,27 @@ static void kfree_rcu_work(struct work_struct *work)
                kvfree_rcu_list(head);
 }
 
+static bool kfree_rcu_sheaf(void *obj)
+{
+       struct kmem_cache *s;
+       struct folio *folio;
+       struct slab *slab;
+
+       if (is_vmalloc_addr(obj))
+               return false;
+
+       folio = virt_to_folio(obj);
+       if (unlikely(!folio_test_slab(folio)))
+               return false;
+
+       slab = folio_slab(folio);
+       s = slab->slab_cache;
+       if (s->cpu_sheaves)
+               return __kfree_rcu_sheaf(s, obj);
+
+       return false;
+}
+
 static bool
 need_offload_krc(struct kfree_rcu_cpu *krcp)
 {
@@ -1952,6 +1973,9 @@ void kvfree_call_rcu(struct rcu_head *head, void *ptr)
        if (!head)
                might_sleep();
 
+       if (kfree_rcu_sheaf(ptr))
+               return;
+
        // Queue the object but don't yet schedule the batch.
        if (debug_rcu_head_queue(ptr)) {
                // Probable double kfree_rcu(), just leak.
diff --git a/mm/slub.c b/mm/slub.c
index 
ae3e80ad9926ca15601eef2f2aa016ca059498f8..6f31a27b5d47fa6621fa8af6d6842564077d4b60
 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -350,6 +350,8 @@ enum stat_item {
        ALLOC_FASTPATH,         /* Allocation from cpu slab */
        ALLOC_SLOWPATH,         /* Allocation by getting a new cpu slab */
        FREE_PCS,               /* Free to percpu sheaf */
+       FREE_RCU_SHEAF,         /* Free to rcu_free sheaf */
+       FREE_RCU_SHEAF_FAIL,    /* Failed to free to a rcu_free sheaf */
        FREE_FASTPATH,          /* Free to cpu slab */
        FREE_SLOWPATH,          /* Freeing not to cpu slab */
        FREE_FROZEN,            /* Freeing to frozen slab */
@@ -444,6 +446,7 @@ struct slab_sheaf {
                struct rcu_head rcu_head;
                struct list_head barn_list;
        };
+       struct kmem_cache *cache;
        unsigned int size;
        void *objects[];
 };
@@ -452,6 +455,7 @@ struct slub_percpu_sheaves {
        local_trylock_t lock;
        struct slab_sheaf *main; /* never NULL when unlocked */
        struct slab_sheaf *spare; /* empty or full, may be NULL */
+       struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
        struct node_barn *barn;
 };
 
@@ -2507,6 +2511,8 @@ static struct slab_sheaf *alloc_empty_sheaf(struct 
kmem_cache *s, gfp_t gfp)
        if (unlikely(!sheaf))
                return NULL;
 
+       sheaf->cache = s;
+
        stat(s, SHEAF_ALLOC);
 
        return sheaf;
@@ -2631,6 +2637,24 @@ static void sheaf_flush_unused(struct kmem_cache *s, 
struct slab_sheaf *sheaf)
        sheaf->size = 0;
 }
 
+static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
+                                    struct slab_sheaf *sheaf);
+
+static void rcu_free_sheaf_nobarn(struct rcu_head *head)
+{
+       struct slab_sheaf *sheaf;
+       struct kmem_cache *s;
+
+       sheaf = container_of(head, struct slab_sheaf, rcu_head);
+       s = sheaf->cache;
+
+       __rcu_free_sheaf_prepare(s, sheaf);
+
+       sheaf_flush_unused(s, sheaf);
+
+       free_empty_sheaf(s, sheaf);
+}
+
 /*
  * Caller needs to make sure migration is disabled in order to fully flush
  * single cpu's sheaves
@@ -2643,7 +2667,7 @@ static void sheaf_flush_unused(struct kmem_cache *s, 
struct slab_sheaf *sheaf)
 static void pcs_flush_all(struct kmem_cache *s)
 {
        struct slub_percpu_sheaves *pcs;
-       struct slab_sheaf *spare;
+       struct slab_sheaf *spare, *rcu_free;
 
        local_lock(&s->cpu_sheaves->lock);
        pcs = this_cpu_ptr(s->cpu_sheaves);
@@ -2651,6 +2675,9 @@ static void pcs_flush_all(struct kmem_cache *s)
        spare = pcs->spare;
        pcs->spare = NULL;
 
+       rcu_free = pcs->rcu_free;
+       pcs->rcu_free = NULL;
+
        local_unlock(&s->cpu_sheaves->lock);
 
        if (spare) {
@@ -2658,6 +2685,9 @@ static void pcs_flush_all(struct kmem_cache *s)
                free_empty_sheaf(s, spare);
        }
 
+       if (rcu_free)
+               call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
+
        sheaf_flush_main(s);
 }
 
@@ -2674,6 +2704,11 @@ static void __pcs_flush_all_cpu(struct kmem_cache *s, 
unsigned int cpu)
                free_empty_sheaf(s, pcs->spare);
                pcs->spare = NULL;
        }
+
+       if (pcs->rcu_free) {
+               call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
+               pcs->rcu_free = NULL;
+       }
 }
 
 static void pcs_destroy(struct kmem_cache *s)
@@ -2699,6 +2734,7 @@ static void pcs_destroy(struct kmem_cache *s)
                 */
 
                WARN_ON(pcs->spare);
+               WARN_ON(pcs->rcu_free);
 
                if (!WARN_ON(pcs->main->size)) {
                        free_empty_sheaf(s, pcs->main);
@@ -3755,7 +3791,7 @@ static bool has_pcs_used(int cpu, struct kmem_cache *s)
 
        pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
 
-       return (pcs->spare || pcs->main->size);
+       return (pcs->spare || pcs->rcu_free || pcs->main->size);
 }
 
 static void pcs_flush_all(struct kmem_cache *s);
@@ -5304,6 +5340,140 @@ bool free_to_pcs(struct kmem_cache *s, void *object)
        return true;
 }
 
+static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
+                                    struct slab_sheaf *sheaf)
+{
+       bool init = slab_want_init_on_free(s);
+       void **p = &sheaf->objects[0];
+       unsigned int i = 0;
+
+       while (i < sheaf->size) {
+               struct slab *slab = virt_to_slab(p[i]);
+
+               memcg_slab_free_hook(s, slab, p + i, 1);
+               alloc_tagging_slab_free_hook(s, slab, p + i, 1);
+
+               if (unlikely(!slab_free_hook(s, p[i], init, true))) {
+                       p[i] = p[--sheaf->size];
+                       continue;
+               }
+
+               i++;
+       }
+}
+
+static void rcu_free_sheaf(struct rcu_head *head)
+{
+       struct slab_sheaf *sheaf;
+       struct node_barn *barn;
+       struct kmem_cache *s;
+
+       sheaf = container_of(head, struct slab_sheaf, rcu_head);
+
+       s = sheaf->cache;
+
+       /*
+        * This may reduce the number of objects that the sheaf is no longer
+        * technically full, but it's easier to treat it that way (unless it's
+        * competely empty), as the code handles it fine, there's just slightly
+        * worse batching benefit. It only happens due to debugging, which
+        * is a performance hit anyway.
+        */
+       __rcu_free_sheaf_prepare(s, sheaf);
+
+       barn = get_node(s, numa_mem_id())->barn;
+
+       /* due to slab_free_hook() */
+       if (unlikely(sheaf->size == 0))
+               goto empty;
+
+       /*
+        * Checking nr_full/nr_empty outside lock avoids contention in case the
+        * barn is at the respective limit. Due to the race we might go over the
+        * limit but that should be rare and harmless.
+        */
+
+       if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
+               stat(s, BARN_PUT);
+               barn_put_full_sheaf(barn, sheaf);
+               return;
+       }
+
+       stat(s, BARN_PUT_FAIL);
+       sheaf_flush_unused(s, sheaf);
+
+empty:
+       if (data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
+               barn_put_empty_sheaf(barn, sheaf);
+               return;
+       }
+
+       free_empty_sheaf(s, sheaf);
+}
+
+bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
+{
+       struct slub_percpu_sheaves *pcs;
+       struct slab_sheaf *rcu_sheaf;
+
+       if (!local_trylock(&s->cpu_sheaves->lock))
+               goto fail;
+
+       pcs = this_cpu_ptr(s->cpu_sheaves);
+
+       if (unlikely(!pcs->rcu_free)) {
+
+               struct slab_sheaf *empty;
+
+               empty = barn_get_empty_sheaf(pcs->barn);
+
+               if (empty) {
+                       pcs->rcu_free = empty;
+                       goto do_free;
+               }
+
+               local_unlock(&s->cpu_sheaves->lock);
+
+               empty = alloc_empty_sheaf(s, GFP_NOWAIT);
+
+               if (!empty)
+                       goto fail;
+
+               if (!local_trylock(&s->cpu_sheaves->lock))
+                       goto fail;
+
+               pcs = this_cpu_ptr(s->cpu_sheaves);
+
+               if (unlikely(pcs->rcu_free))
+                       barn_put_empty_sheaf(pcs->barn, empty);
+               else
+                       pcs->rcu_free = empty;
+       }
+
+do_free:
+
+       rcu_sheaf = pcs->rcu_free;
+
+       rcu_sheaf->objects[rcu_sheaf->size++] = obj;
+
+       if (likely(rcu_sheaf->size < s->sheaf_capacity))
+               rcu_sheaf = NULL;
+       else
+               pcs->rcu_free = NULL;
+
+       local_unlock(&s->cpu_sheaves->lock);
+
+       if (rcu_sheaf)
+               call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
+
+       stat(s, FREE_RCU_SHEAF);
+       return true;
+
+fail:
+       stat(s, FREE_RCU_SHEAF_FAIL);
+       return false;
+}
+
 /*
  * Bulk free objects to the percpu sheaves.
  * Unlike free_to_pcs() this includes the calls to all necessary hooks
@@ -6802,6 +6972,11 @@ int __kmem_cache_shutdown(struct kmem_cache *s)
        struct kmem_cache_node *n;
 
        flush_all_cpus_locked(s);
+
+       /* we might have rcu sheaves in flight */
+       if (s->cpu_sheaves)
+               rcu_barrier();
+
        /* Attempt to free all objects */
        for_each_kmem_cache_node(s, node, n) {
                if (n->barn)
@@ -8214,6 +8389,8 @@ STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
 STAT_ATTR(FREE_PCS, free_cpu_sheaf);
+STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
+STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
 STAT_ATTR(FREE_FASTPATH, free_fastpath);
 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
 STAT_ATTR(FREE_FROZEN, free_frozen);
@@ -8312,6 +8489,8 @@ static struct attribute *slab_attrs[] = {
        &alloc_fastpath_attr.attr,
        &alloc_slowpath_attr.attr,
        &free_cpu_sheaf_attr.attr,
+       &free_rcu_sheaf_attr.attr,
+       &free_rcu_sheaf_fail_attr.attr,
        &free_fastpath_attr.attr,
        &free_slowpath_attr.attr,
        &free_frozen_attr.attr,

-- 
2.49.0


Reply via email to