On Mon, Mar 17, 2025 at 7:33 AM Vlastimil Babka <vba...@suse.cz> wrote: > > Specifying a non-zero value for a new struct kmem_cache_args field > sheaf_capacity will setup a caching layer of percpu arrays called > sheaves of given capacity for the created cache. > > Allocations from the cache will allocate via the percpu sheaves (main or > spare) as long as they have no NUMA node preference. Frees will also > refill one of the sheaves. > > When both percpu sheaves are found empty during an allocation, an empty > sheaf may be replaced with a full one from the per-node barn. If none > are available and the allocation is allowed to block, an empty sheaf is > refilled from slab(s) by an internal bulk alloc operation. When both > percpu sheaves are full during freeing, the barn can replace a full one > with an empty one, unless over a full sheaves limit. In that case a > sheaf is flushed to slab(s) by an internal bulk free operation. Flushing > sheaves and barns is also wired to the existing cpu flushing and cache > shrinking operations. > > The sheaves do not distinguish NUMA locality of the cached objects. If > an allocation is requested with kmem_cache_alloc_node() with a specific > node (not NUMA_NO_NODE), sheaves are bypassed. > > The bulk operations exposed to slab users also try to utilize the > sheaves as long as the necessary (full or empty) sheaves are available > on the cpu or in the barn. Once depleted, they will fallback to bulk > alloc/free to slabs directly to avoid double copying. > > Sysfs stat counters alloc_cpu_sheaf and free_cpu_sheaf count objects > allocated or freed using the sheaves. Counters sheaf_refill, > sheaf_flush_main and sheaf_flush_other count objects filled or flushed > from or to slab pages, and can be used to assess how effective the > caching is. The refill and flush operations will also count towards the > usual alloc_fastpath/slowpath, free_fastpath/slowpath and other > counters. > > Access to the percpu sheaves is protected by localtry_trylock() when > potential callers include irq context, and localtry_lock() otherwise > (such as when we already know the gfp flags allow blocking). The trylock > failures should be rare and we can easily fallback. Each per-NUMA-node > barn has a spin_lock. > > A current limitation is that when slub_debug is enabled for a cache with > percpu sheaves, the objects in the array are considered as allocated from > the slub_debug perspective, and the alloc/free debugging hooks occur > when moving the objects between the array and slab pages. This means > that e.g. an use-after-free that occurs for an object cached in the > array is undetected. Collected alloc/free stacktraces might also be less > useful. This limitation could be changed in the future. > > On the other hand, KASAN, kmemcg and other hooks are executed on actual > allocations and frees by kmem_cache users even if those use the array, > so their debugging or accounting accuracy should be unaffected. > > Signed-off-by: Vlastimil Babka <vba...@suse.cz> > --- > include/linux/slab.h | 34 ++ > mm/slab.h | 2 + > mm/slab_common.c | 5 +- > mm/slub.c | 1029 > +++++++++++++++++++++++++++++++++++++++++++++++--- > 4 files changed, 1020 insertions(+), 50 deletions(-) > > diff --git a/include/linux/slab.h b/include/linux/slab.h > index > 7686054dd494cc65def7f58748718e03eb78e481..0e1b25228c77140d05b5b4433c9d7923de36ec05 > 100644 > --- a/include/linux/slab.h > +++ b/include/linux/slab.h > @@ -332,6 +332,40 @@ struct kmem_cache_args { > * %NULL means no constructor. > */ > void (*ctor)(void *); > + /** > + * @sheaf_capacity: Enable sheaves of given capacity for the cache. > + * > + * With a non-zero value, allocations from the cache go through > caching > + * arrays called sheaves. Each cpu has a main sheaf that's always > + * present, and a spare sheaf thay may be not present. When both > become > + * empty, there's an attempt to replace an empty sheaf with a full > sheaf > + * from the per-node barn. > + * > + * When no full sheaf is available, and gfp flags allow blocking, a > + * sheaf is allocated and filled from slab(s) using bulk allocation. > + * Otherwise the allocation falls back to the normal operation > + * allocating a single object from a slab. > + * > + * Analogically when freeing and both percpu sheaves are full, the > barn > + * may replace it with an empty sheaf, unless it's over capacity. In > + * that case a sheaf is bulk freed to slab pages. > + * > + * The sheaves does not distinguish NUMA placement of objects, so > + * allocations via kmem_cache_alloc_node() with a node specified other > + * than NUMA_NO_NODE will bypass them. > + * > + * Bulk allocation and free operations also try to use the cpu sheaves > + * and barn, but fallback to using slab pages directly. > + * > + * Limitations: when slub_debug is enabled for the cache, all relevant > + * actions (i.e. poisoning, obtaining stacktraces) and checks happen > + * when objects move between sheaves and slab pages, which may result > in > + * e.g. not detecting a use-after-free while the object is in the > array > + * cache, and the stacktraces may be less useful. > + * > + * %0 means no sheaves will be created > + */ > + unsigned int sheaf_capacity; > }; > > struct kmem_cache *__kmem_cache_create_args(const char *name, > diff --git a/mm/slab.h b/mm/slab.h > index > 2f01c7317988ce036f0b22807403226a59f0f708..8daaec53b6ecfc44171191d421adb12e5cba2c58 > 100644 > --- a/mm/slab.h > +++ b/mm/slab.h > @@ -259,6 +259,7 @@ struct kmem_cache { > #ifndef CONFIG_SLUB_TINY > struct kmem_cache_cpu __percpu *cpu_slab; > #endif > + struct slub_percpu_sheaves __percpu *cpu_sheaves; > /* Used for retrieving partial slabs, etc. */ > slab_flags_t flags; > unsigned long min_partial; > @@ -272,6 +273,7 @@ struct kmem_cache { > /* Number of per cpu partial slabs to keep around */ > unsigned int cpu_partial_slabs; > #endif > + unsigned int sheaf_capacity; > struct kmem_cache_order_objects oo; > > /* Allocation and freeing of slabs */ > diff --git a/mm/slab_common.c b/mm/slab_common.c > index > 46d0a4cd33b5982fd79c307d572f231fdea9514a..ceeefb287899a82f30ad79b403556001c1860311 > 100644 > --- a/mm/slab_common.c > +++ b/mm/slab_common.c > @@ -163,6 +163,9 @@ int slab_unmergeable(struct kmem_cache *s) > return 1; > #endif > > + if (s->cpu_sheaves) > + return 1; > + > /* > * We may have set a slab to be unmergeable during bootstrap. > */ > @@ -328,7 +331,7 @@ struct kmem_cache *__kmem_cache_create_args(const char > *name, > object_size - args->usersize < args->useroffset)) > args->usersize = args->useroffset = 0; > > - if (!args->usersize) > + if (!args->usersize && !args->sheaf_capacity) > s = __kmem_cache_alias(name, object_size, args->align, flags, > args->ctor); > if (s) > diff --git a/mm/slub.c b/mm/slub.c > index > e8273f28656936c05d015c53923f8fe69cd161b2..fa3a6329713a9f45b189f27d4b1b334b54589c38 > 100644 > --- a/mm/slub.c > +++ b/mm/slub.c > @@ -346,8 +346,10 @@ static inline void debugfs_slab_add(struct kmem_cache > *s) { } > #endif > > enum stat_item { > + ALLOC_PCS, /* Allocation from percpu sheaf */ > ALLOC_FASTPATH, /* Allocation from cpu slab */ > ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ > + FREE_PCS, /* Free to percpu sheaf */ > FREE_FASTPATH, /* Free to cpu slab */ > FREE_SLOWPATH, /* Freeing not to cpu slab */ > FREE_FROZEN, /* Freeing to frozen slab */ > @@ -372,6 +374,12 @@ enum stat_item { > CPU_PARTIAL_FREE, /* Refill cpu partial on free */ > CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ > CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ > + SHEAF_FLUSH_MAIN, /* Objects flushed from main percpu sheaf */ > + SHEAF_FLUSH_OTHER, /* Objects flushed from other sheaves */ > + SHEAF_REFILL, /* Objects refilled to a sheaf */ > + SHEAF_SWAP, /* Swapping main and spare sheaf */ > + SHEAF_ALLOC, /* Allocation of an empty sheaf */ > + SHEAF_FREE, /* Freeing of an empty sheaf */ > NR_SLUB_STAT_ITEMS > }; > > @@ -418,6 +426,33 @@ void stat_add(const struct kmem_cache *s, enum stat_item > si, int v) > #endif > } > > +#define MAX_FULL_SHEAVES 10 > +#define MAX_EMPTY_SHEAVES 10 > + > +struct node_barn { > + spinlock_t lock; > + struct list_head sheaves_full; > + struct list_head sheaves_empty; > + unsigned int nr_full; > + unsigned int nr_empty; > +}; > + > +struct slab_sheaf { > + union { > + struct rcu_head rcu_head; > + struct list_head barn_list; > + }; > + unsigned int size; > + void *objects[]; > +}; > + > +struct slub_percpu_sheaves { > + localtry_lock_t lock; > + struct slab_sheaf *main; /* never NULL when unlocked */ > + struct slab_sheaf *spare; /* empty or full, may be NULL */ > + struct node_barn *barn; > +}; > + > /* > * The slab lists for all objects. > */ > @@ -430,6 +465,7 @@ struct kmem_cache_node { > atomic_long_t total_objects; > struct list_head full; > #endif > + struct node_barn *barn; > }; > > static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int > node) > @@ -453,12 +489,19 @@ static inline struct kmem_cache_node *get_node(struct > kmem_cache *s, int node) > */ > static nodemask_t slab_nodes; > > -#ifndef CONFIG_SLUB_TINY > /* > * Workqueue used for flush_cpu_slab(). > */ > static struct workqueue_struct *flushwq; > -#endif > + > +struct slub_flush_work { > + struct work_struct work; > + struct kmem_cache *s; > + bool skip; > +}; > + > +static DEFINE_MUTEX(flush_lock); > +static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); > > /******************************************************************** > * Core slab cache functions > @@ -2410,6 +2453,358 @@ static void *setup_object(struct kmem_cache *s, void > *object) > return object; > } > > +static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp) > +{ > + struct slab_sheaf *sheaf = kzalloc(struct_size(sheaf, objects, > + s->sheaf_capacity), gfp); > + > + if (unlikely(!sheaf)) > + return NULL; > + > + stat(s, SHEAF_ALLOC); > + > + return sheaf; > +} > + > +static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf) > +{ > + kfree(sheaf); > + > + stat(s, SHEAF_FREE); > +} > + > +static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, > + size_t size, void **p); > + > + > +static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf, > + gfp_t gfp) > +{ > + int to_fill = s->sheaf_capacity - sheaf->size; > + int filled; > + > + if (!to_fill) > + return 0; > + > + filled = __kmem_cache_alloc_bulk(s, gfp, to_fill, > + &sheaf->objects[sheaf->size]); > + > + sheaf->size += filled; > + > + stat_add(s, SHEAF_REFILL, filled); > + > + if (filled < to_fill) > + return -ENOMEM; > + > + return 0; > +} > + > + > +static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp) > +{ > + struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp); > + > + if (!sheaf) > + return NULL; > + > + if (refill_sheaf(s, sheaf, gfp)) { > + free_empty_sheaf(s, sheaf); > + return NULL; > + } > + > + return sheaf; > +} > + > +/* > + * Maximum number of objects freed during a single flush of main pcs sheaf. > + * Translates directly to an on-stack array size. > + */ > +#define PCS_BATCH_MAX 32U > + > +static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void > **p); > + > +/* > + * Free all objects from the main sheaf. In order to perform > + * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches > where > + * object pointers are moved to a on-stack array under the lock. To bound the > + * stack usage, limit each batch to PCS_BATCH_MAX. > + * > + * returns true if at least partially flushed > + */ > +static bool sheaf_flush_main(struct kmem_cache *s) > +{ > + struct slub_percpu_sheaves *pcs; > + unsigned int batch, remaining; > + void *objects[PCS_BATCH_MAX]; > + struct slab_sheaf *sheaf; > + bool ret = false; > + > +next_batch: > + if (!localtry_trylock(&s->cpu_sheaves->lock)) > + return ret; > + > + pcs = this_cpu_ptr(s->cpu_sheaves); > + sheaf = pcs->main; > + > + batch = min(PCS_BATCH_MAX, sheaf->size); > + > + sheaf->size -= batch; > + memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *)); > + > + remaining = sheaf->size; > + > + localtry_unlock(&s->cpu_sheaves->lock); > + > + __kmem_cache_free_bulk(s, batch, &objects[0]); > + > + stat_add(s, SHEAF_FLUSH_MAIN, batch); > + > + ret = true; > + > + if (remaining) > + goto next_batch; > + > + return ret; > +} > + > +/* > + * Free all objects from a sheaf that's unused, i.e. not linked to any > + * cpu_sheaves, so we need no locking and batching. The locking is also not > + * necessary when flushing cpu's sheaves (both spare and main) during cpu > + * hotremove as the cpu is not executing anymore. > + */ > +static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf > *sheaf) > +{ > + if (!sheaf->size) > + return; > + > + stat_add(s, SHEAF_FLUSH_OTHER, sheaf->size); > + > + __kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]); > + > + sheaf->size = 0; > +} > + > +/* > + * Caller needs to make sure migration is disabled in order to fully flush > + * single cpu's sheaves > + * > + * must not be called from an irq > + * > + * flushing operations are rare so let's keep it simple and flush to slabs > + * directly, skipping the barn > + */ > +static void pcs_flush_all(struct kmem_cache *s) > +{ > + struct slub_percpu_sheaves *pcs; > + struct slab_sheaf *spare; > + > + localtry_lock(&s->cpu_sheaves->lock); > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + spare = pcs->spare; > + pcs->spare = NULL; > + > + localtry_unlock(&s->cpu_sheaves->lock); > + > + if (spare) { > + sheaf_flush_unused(s, spare); > + free_empty_sheaf(s, spare); > + } > + > + sheaf_flush_main(s); > +} > + > +static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu) > +{ > + struct slub_percpu_sheaves *pcs; > + > + pcs = per_cpu_ptr(s->cpu_sheaves, cpu); > + > + /* The cpu is not executing anymore so we don't need pcs->lock */ > + sheaf_flush_unused(s, pcs->main);
You are flushing pcs->main but sheaf_flush_unused() will account that in SHEAF_FLUSH_OTHER instead of SHEAF_FLUSH_MAIN. Perhaps sheaf_flush_unused() needs a parameter to indicate which counter to be incremented. > + if (pcs->spare) { > + sheaf_flush_unused(s, pcs->spare); > + free_empty_sheaf(s, pcs->spare); > + pcs->spare = NULL; > + } > +} > + > +static void pcs_destroy(struct kmem_cache *s) > +{ > + int cpu; > + > + for_each_possible_cpu(cpu) { > + struct slub_percpu_sheaves *pcs; > + > + pcs = per_cpu_ptr(s->cpu_sheaves, cpu); > + > + /* can happen when unwinding failed create */ > + if (!pcs->main) > + continue; > + > + WARN_ON(pcs->spare); > + > + if (!WARN_ON(pcs->main->size)) { If pcs->main->size > 0, shouldn't we flush pcs->main? I understand it's not a normal situation but I think something like this would be more correct: if (WARN_ON(pcs->main->size)) sheaf_flush_unused(s, pcs->main); free_empty_sheaf(s, pcs->main); pcs->main = NULL; > + free_empty_sheaf(s, pcs->main); > + pcs->main = NULL; > + } > + } > + > + free_percpu(s->cpu_sheaves); > + s->cpu_sheaves = NULL; > +} > + > +static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn) > +{ > + struct slab_sheaf *empty = NULL; > + unsigned long flags; > + > + spin_lock_irqsave(&barn->lock, flags); > + > + if (barn->nr_empty) { > + empty = list_first_entry(&barn->sheaves_empty, > + struct slab_sheaf, barn_list); > + list_del(&empty->barn_list); > + barn->nr_empty--; > + } > + > + spin_unlock_irqrestore(&barn->lock, flags); > + > + return empty; > +} > + > +static int barn_put_empty_sheaf(struct node_barn *barn, > + struct slab_sheaf *sheaf, bool ignore_limit) This ignore_limit in barn_put_empty_sheaf()/barn_put_full_sheaf() is sticking out and really used only inside rcu_free_sheaf() in the next patch. Every time I saw the return value of these functions ignored I had to remind myself that they pass ignore_limit=true, so the function can't really fail. Maybe we could get rid of this flag and do trimming of barn lists inside rcu_free_sheaf() separately in one go? IIUC because we ignore the limits in all other places, at the time of rcu_free_sheaf() we might end up with a barn having many more sheaves than the limit allows for, so trimming in bulk might be even more productive. > +{ > + unsigned long flags; > + int ret = 0; > + > + spin_lock_irqsave(&barn->lock, flags); > + > + if (!ignore_limit && barn->nr_empty >= MAX_EMPTY_SHEAVES) { > + ret = -E2BIG; > + } else { > + list_add(&sheaf->barn_list, &barn->sheaves_empty); > + barn->nr_empty++; > + } > + > + spin_unlock_irqrestore(&barn->lock, flags); > + return ret; > +} > + > +static int barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf > *sheaf, > + bool ignore_limit) Can this function be called for partially populated sheaves or only full ones? I think rcu_free_sheaf() in the next patch might end up calling it for a partially populated sheaf. > +{ > + unsigned long flags; > + int ret = 0; > + > + spin_lock_irqsave(&barn->lock, flags); > + > + if (!ignore_limit && barn->nr_full >= MAX_FULL_SHEAVES) { > + ret = -E2BIG; > + } else { > + list_add(&sheaf->barn_list, &barn->sheaves_full); > + barn->nr_full++; > + } > + > + spin_unlock_irqrestore(&barn->lock, flags); > + return ret; > +} > + > +/* > + * If a full sheaf is available, return it and put the supplied empty one to > + * barn. We ignore the limit on empty sheaves as the number of sheaves > doesn't > + * change. I'm unclear why we ignore the limit here but not in barn_replace_full_sheaf(). Maybe because full sheaves consume more memory? But then why do we mostly pass ignore_limit=true when invoking barn_put_full_sheaf()? Explanation of this limit logic needs to be clarified. > + */ > +static struct slab_sheaf * > +barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty) > +{ > + struct slab_sheaf *full = NULL; > + unsigned long flags; > + > + spin_lock_irqsave(&barn->lock, flags); > + > + if (barn->nr_full) { > + full = list_first_entry(&barn->sheaves_full, struct > slab_sheaf, > + barn_list); > + list_del(&full->barn_list); > + list_add(&empty->barn_list, &barn->sheaves_empty); > + barn->nr_full--; > + barn->nr_empty++; > + } > + > + spin_unlock_irqrestore(&barn->lock, flags); > + > + return full; > +} > +/* > + * If a empty sheaf is available, return it and put the supplied full one to > + * barn. But if there are too many full sheaves, reject this with -E2BIG. > + */ > +static struct slab_sheaf * > +barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full) > +{ > + struct slab_sheaf *empty; > + unsigned long flags; > + > + spin_lock_irqsave(&barn->lock, flags); > + > + if (barn->nr_full >= MAX_FULL_SHEAVES) { > + empty = ERR_PTR(-E2BIG); > + } else if (!barn->nr_empty) { > + empty = ERR_PTR(-ENOMEM); > + } else { > + empty = list_first_entry(&barn->sheaves_empty, struct > slab_sheaf, > + barn_list); > + list_del(&empty->barn_list); > + list_add(&full->barn_list, &barn->sheaves_full); > + barn->nr_empty--; > + barn->nr_full++; > + } > + > + spin_unlock_irqrestore(&barn->lock, flags); > + > + return empty; > +} > + > +static void barn_init(struct node_barn *barn) > +{ > + spin_lock_init(&barn->lock); > + INIT_LIST_HEAD(&barn->sheaves_full); > + INIT_LIST_HEAD(&barn->sheaves_empty); > + barn->nr_full = 0; > + barn->nr_empty = 0; > +} > + > +static void barn_shrink(struct kmem_cache *s, struct node_barn *barn) > +{ > + struct list_head empty_list; > + struct list_head full_list; > + struct slab_sheaf *sheaf, *sheaf2; > + unsigned long flags; > + > + INIT_LIST_HEAD(&empty_list); > + INIT_LIST_HEAD(&full_list); > + > + spin_lock_irqsave(&barn->lock, flags); > + > + list_splice_init(&barn->sheaves_full, &full_list); > + barn->nr_full = 0; > + list_splice_init(&barn->sheaves_empty, &empty_list); > + barn->nr_empty = 0; > + > + spin_unlock_irqrestore(&barn->lock, flags); > + > + list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) { > + sheaf_flush_unused(s, sheaf); > + free_empty_sheaf(s, sheaf); > + } > + > + list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list) > + free_empty_sheaf(s, sheaf); > +} > + > /* > * Slab allocation and freeing > */ > @@ -3280,11 +3675,42 @@ static inline void __flush_cpu_slab(struct kmem_cache > *s, int cpu) > put_partials_cpu(s, c); > } > > -struct slub_flush_work { > - struct work_struct work; > - struct kmem_cache *s; > - bool skip; > -}; > +static inline void flush_this_cpu_slab(struct kmem_cache *s) > +{ > + struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); > + > + if (c->slab) > + flush_slab(s, c); > + > + put_partials(s); > +} > + > +static bool has_cpu_slab(int cpu, struct kmem_cache *s) > +{ > + struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); > + > + return c->slab || slub_percpu_partial(c); > +} > + > +#else /* CONFIG_SLUB_TINY */ > +static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } > +static inline bool has_cpu_slab(int cpu, struct kmem_cache *s) { return > false; } > +static inline void flush_this_cpu_slab(struct kmem_cache *s) { } > +#endif /* CONFIG_SLUB_TINY */ > + > +static bool has_pcs_used(int cpu, struct kmem_cache *s) > +{ > + struct slub_percpu_sheaves *pcs; > + > + if (!s->cpu_sheaves) > + return false; > + > + pcs = per_cpu_ptr(s->cpu_sheaves, cpu); > + > + return (pcs->spare || pcs->main->size); > +} > + > +static void pcs_flush_all(struct kmem_cache *s); > > /* > * Flush cpu slab. > @@ -3294,30 +3720,18 @@ struct slub_flush_work { > static void flush_cpu_slab(struct work_struct *w) > { > struct kmem_cache *s; > - struct kmem_cache_cpu *c; > struct slub_flush_work *sfw; > > sfw = container_of(w, struct slub_flush_work, work); > > s = sfw->s; > - c = this_cpu_ptr(s->cpu_slab); > - > - if (c->slab) > - flush_slab(s, c); > - > - put_partials(s); > -} > > -static bool has_cpu_slab(int cpu, struct kmem_cache *s) > -{ > - struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); > + if (s->cpu_sheaves) > + pcs_flush_all(s); > > - return c->slab || slub_percpu_partial(c); > + flush_this_cpu_slab(s); > } > > -static DEFINE_MUTEX(flush_lock); > -static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); > - > static void flush_all_cpus_locked(struct kmem_cache *s) > { > struct slub_flush_work *sfw; > @@ -3328,7 +3742,7 @@ static void flush_all_cpus_locked(struct kmem_cache *s) > > for_each_online_cpu(cpu) { > sfw = &per_cpu(slub_flush, cpu); > - if (!has_cpu_slab(cpu, s)) { > + if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) { > sfw->skip = true; > continue; > } > @@ -3364,19 +3778,14 @@ static int slub_cpu_dead(unsigned int cpu) > struct kmem_cache *s; > > mutex_lock(&slab_mutex); > - list_for_each_entry(s, &slab_caches, list) > + list_for_each_entry(s, &slab_caches, list) { > __flush_cpu_slab(s, cpu); > + __pcs_flush_all_cpu(s, cpu); > + } > mutex_unlock(&slab_mutex); > return 0; > } > > -#else /* CONFIG_SLUB_TINY */ > -static inline void flush_all_cpus_locked(struct kmem_cache *s) { } > -static inline void flush_all(struct kmem_cache *s) { } > -static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } > -static inline int slub_cpu_dead(unsigned int cpu) { return 0; } > -#endif /* CONFIG_SLUB_TINY */ > - > /* > * Check if the objects in a per cpu structure fit numa > * locality expectations. > @@ -4126,6 +4535,179 @@ bool slab_post_alloc_hook(struct kmem_cache *s, > struct list_lru *lru, > return memcg_slab_post_alloc_hook(s, lru, flags, size, p); > } > > +static __fastpath_inline > +void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp) > +{ > + struct slub_percpu_sheaves *pcs; > + void *object; > + > + if (!localtry_trylock(&s->cpu_sheaves->lock)) > + return NULL; > + > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + if (unlikely(pcs->main->size == 0)) { > + > + struct slab_sheaf *empty = NULL; > + struct slab_sheaf *full; > + bool can_alloc; > + > + if (pcs->spare && pcs->spare->size > 0) { > + stat(s, SHEAF_SWAP); > + swap(pcs->main, pcs->spare); > + goto do_alloc; > + } > + > + full = barn_replace_empty_sheaf(pcs->barn, pcs->main); > + > + if (full) { > + pcs->main = full; > + goto do_alloc; > + } > + > + can_alloc = gfpflags_allow_blocking(gfp); > + > + if (can_alloc) { > + if (pcs->spare) { > + empty = pcs->spare; > + pcs->spare = NULL; > + } else { > + empty = barn_get_empty_sheaf(pcs->barn); > + } > + } > + > + localtry_unlock(&s->cpu_sheaves->lock); > + > + if (!can_alloc) > + return NULL; > + > + if (empty) { > + if (!refill_sheaf(s, empty, gfp)) { > + full = empty; > + } else { > + /* > + * we must be very low on memory so don't > bother > + * with the barn > + */ > + free_empty_sheaf(s, empty); > + } > + } else { > + full = alloc_full_sheaf(s, gfp); > + } > + > + if (!full) > + return NULL; > + > + /* > + * we can reach here only when gfpflags_allow_blocking > + * so this must not be an irq > + */ > + localtry_lock(&s->cpu_sheaves->lock); > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + /* > + * If we are returning empty sheaf, we either got it from the > + * barn or had to allocate one. If we are returning a full > + * sheaf, it's due to racing or being migrated to a different > + * cpu. Breaching the barn's sheaf limits should be thus rare > + * enough so just ignore them to simplify the recovery. > + */ > + > + if (pcs->main->size == 0) { > + barn_put_empty_sheaf(pcs->barn, pcs->main, true); > + pcs->main = full; > + goto do_alloc; > + } > + > + if (!pcs->spare) { > + pcs->spare = full; > + goto do_alloc; > + } > + > + if (pcs->spare->size == 0) { > + barn_put_empty_sheaf(pcs->barn, pcs->spare, true); > + pcs->spare = full; > + goto do_alloc; > + } > + > + barn_put_full_sheaf(pcs->barn, full, true); > + } > + > +do_alloc: > + object = pcs->main->objects[--pcs->main->size]; > + > + localtry_unlock(&s->cpu_sheaves->lock); > + > + stat(s, ALLOC_PCS); > + > + return object; > +} > + > +static __fastpath_inline > +unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p) > +{ > + struct slub_percpu_sheaves *pcs; > + struct slab_sheaf *main; > + unsigned int allocated = 0; > + unsigned int batch; > + > +next_batch: > + if (!localtry_trylock(&s->cpu_sheaves->lock)) > + return allocated; > + > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + if (unlikely(pcs->main->size == 0)) { The above condition is unlikely only for the first batch. I think it's actually guaranteed on all consecutive batches once you do "goto next_batch", right? > + > + struct slab_sheaf *full; > + > + if (pcs->spare && pcs->spare->size > 0) { > + stat(s, SHEAF_SWAP); > + swap(pcs->main, pcs->spare); > + goto do_alloc; > + } > + > + full = barn_replace_empty_sheaf(pcs->barn, pcs->main); > + > + if (full) { > + pcs->main = full; > + goto do_alloc; > + } > + > + localtry_unlock(&s->cpu_sheaves->lock); > + > + /* > + * Once full sheaves in barn are depleted, let the bulk > + * allocation continue from slab pages, otherwise we would > just > + * be copying arrays of pointers twice. > + */ > + return allocated; > + } > + > +do_alloc: > + > + main = pcs->main; > + batch = min(size, main->size); > + > + main->size -= batch; > + memcpy(p, main->objects + main->size, batch * sizeof(void *)); > + > + localtry_unlock(&s->cpu_sheaves->lock); > + > + stat_add(s, ALLOC_PCS, batch); > + > + allocated += batch; > + > + if (batch < size) { > + p += batch; > + size -= batch; > + goto next_batch; > + } > + > + return allocated; > +} > + > + > /* > * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) > * have the fastpath folded into their functions. So no function call > @@ -4150,7 +4732,11 @@ static __fastpath_inline void *slab_alloc_node(struct > kmem_cache *s, struct list > if (unlikely(object)) > goto out; > > - object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); > + if (s->cpu_sheaves && (node == NUMA_NO_NODE)) > + object = alloc_from_pcs(s, gfpflags); > + > + if (!object) > + object = __slab_alloc_node(s, gfpflags, node, addr, > orig_size); > > maybe_wipe_obj_freeptr(s, object); > init = slab_want_init_on_alloc(gfpflags, s); > @@ -4521,6 +5107,232 @@ static void __slab_free(struct kmem_cache *s, struct > slab *slab, > discard_slab(s, slab); > } > > +/* > + * pcs is locked. We should have get rid of the spare sheaf and obtained an > + * empty sheaf, while the main sheaf is full. We want to install the empty > sheaf > + * as a main sheaf, and make the current main sheaf a spare sheaf. > + * > + * However due to having relinquished the cpu_sheaves lock when obtaining > + * the empty sheaf, we need to handle some unlikely but possible cases. > + * > + * If we put any sheaf to barn here, it's because we were interrupted or have > + * been migrated to a different cpu, which should be rare enough so just > ignore > + * the barn's limits to simplify the handling. > + */ > +static void __pcs_install_empty_sheaf(struct kmem_cache *s, > + struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty) > +{ > + /* this is what we expect to find in nobody interrupted us */ s/in/if in the above comment > + if (likely(!pcs->spare)) { > + pcs->spare = pcs->main; > + pcs->main = empty; > + return; > + } > + > + /* > + * Unlikely because if the main sheaf had space, we would have just > + * freed to it. Get rid of our empty sheaf. > + */ > + if (pcs->main->size < s->sheaf_capacity) { > + barn_put_empty_sheaf(pcs->barn, empty, true); > + return; > + } > + > + /* Also unlikely for the same reason */ > + if (pcs->spare->size < s->sheaf_capacity) { > + stat(s, SHEAF_SWAP); > + swap(pcs->main, pcs->spare); > + barn_put_empty_sheaf(pcs->barn, empty, true); > + return; > + } > + > + barn_put_full_sheaf(pcs->barn, pcs->main, true); > + pcs->main = empty; > +} > + > +/* > + * Free an object to the percpu sheaves. > + * The object is expected to have passed slab_free_hook() already. > + */ > +static __fastpath_inline > +bool free_to_pcs(struct kmem_cache *s, void *object) > +{ > + struct slub_percpu_sheaves *pcs; > + > +restart: > + if (!localtry_trylock(&s->cpu_sheaves->lock)) > + return false; > + > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + if (unlikely(pcs->main->size == s->sheaf_capacity)) { > + > + struct slab_sheaf *empty; > + > + if (!pcs->spare) { > + empty = barn_get_empty_sheaf(pcs->barn); > + if (empty) { > + pcs->spare = pcs->main; > + pcs->main = empty; > + goto do_free; > + } > + goto alloc_empty; > + } > + > + if (pcs->spare->size < s->sheaf_capacity) { > + stat(s, SHEAF_SWAP); > + swap(pcs->main, pcs->spare); > + goto do_free; > + } > + > + empty = barn_replace_full_sheaf(pcs->barn, pcs->main); This function reads easier now but if barn_replace_full_sheaf() could ignore the MAX_FULL_SHEAVES and barn list trimming could be done later, it would simplify this function even further. > + > + if (!IS_ERR(empty)) { > + pcs->main = empty; > + goto do_free; > + } > + > + if (PTR_ERR(empty) == -E2BIG) { > + /* Since we got here, spare exists and is full */ > + struct slab_sheaf *to_flush = pcs->spare; > + > + pcs->spare = NULL; > + localtry_unlock(&s->cpu_sheaves->lock); > + > + sheaf_flush_unused(s, to_flush); > + empty = to_flush; > + goto got_empty; > + } > + > +alloc_empty: > + localtry_unlock(&s->cpu_sheaves->lock); > + > + empty = alloc_empty_sheaf(s, GFP_NOWAIT); > + > + if (!empty) { > + if (sheaf_flush_main(s)) > + goto restart; > + else > + return false; > + } > + > +got_empty: > + if (!localtry_trylock(&s->cpu_sheaves->lock)) { > + struct node_barn *barn; > + > + barn = get_node(s, numa_mem_id())->barn; > + > + barn_put_empty_sheaf(barn, empty, true); > + return false; > + } > + > + pcs = this_cpu_ptr(s->cpu_sheaves); > + __pcs_install_empty_sheaf(s, pcs, empty); > + } > + > +do_free: > + pcs->main->objects[pcs->main->size++] = object; > + > + localtry_unlock(&s->cpu_sheaves->lock); > + > + stat(s, FREE_PCS); > + > + return true; > +} > + > +/* > + * Bulk free objects to the percpu sheaves. > + * Unlike free_to_pcs() this includes the calls to all necessary hooks > + * and the fallback to freeing to slab pages. > + */ > +static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p) > +{ > + struct slub_percpu_sheaves *pcs; > + struct slab_sheaf *main; > + unsigned int batch, i = 0; > + bool init; > + > + init = slab_want_init_on_free(s); > + > + while (i < size) { > + struct slab *slab = virt_to_slab(p[i]); > + > + memcg_slab_free_hook(s, slab, p + i, 1); > + alloc_tagging_slab_free_hook(s, slab, p + i, 1); > + > + if (unlikely(!slab_free_hook(s, p[i], init, false))) { > + p[i] = p[--size]; > + if (!size) > + return; > + continue; > + } > + > + i++; > + } > + > +next_batch: nit: I think the section below would be more readable if structured with fail handling blocks at the end. Something like this: next_batch: if (!localtry_trylock(&s->cpu_sheaves->lock)) goto fallback; pcs = this_cpu_ptr(s->cpu_sheaves); if (likely(pcs->main->size < s->sheaf_capacity)) goto do_free; if (!pcs->spare) { empty = barn_get_empty_sheaf(pcs->barn); if (!empty) goto no_empty; pcs->spare = pcs->main; pcs->main = empty; goto do_free; } if (pcs->spare->size < s->sheaf_capacity) { stat(s, SHEAF_SWAP); swap(pcs->main, pcs->spare); goto do_free; } empty = barn_replace_full_sheaf(pcs->barn, pcs->main); if (IS_ERR(empty)) goto no_empty; pcs->main = empty; do_free: main = pcs->main; batch = min(size, s->sheaf_capacity - main->size); memcpy(main->objects + main->size, p, batch * sizeof(void *)); main->size += batch; localtry_unlock(&s->cpu_sheaves->lock); stat_add(s, FREE_PCS, batch); if (batch < size) { p += batch; size -= batch; goto next_batch; } return; no_empty: localtry_unlock(&s->cpu_sheaves->lock); /* * if we depleted all empty sheaves in the barn or there are too * many full sheaves, free the rest to slab pages */ fallback: __kmem_cache_free_bulk(s, size, p); } > + if (!localtry_trylock(&s->cpu_sheaves->lock)) > + goto fallback; > + > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + if (unlikely(pcs->main->size == s->sheaf_capacity)) { > + > + struct slab_sheaf *empty; > + > + if (!pcs->spare) { > + empty = barn_get_empty_sheaf(pcs->barn); > + if (empty) { > + pcs->spare = pcs->main; > + pcs->main = empty; > + goto do_free; > + } > + goto no_empty; > + } > + > + if (pcs->spare->size < s->sheaf_capacity) { > + stat(s, SHEAF_SWAP); > + swap(pcs->main, pcs->spare); > + goto do_free; > + } > + > + empty = barn_replace_full_sheaf(pcs->barn, pcs->main); > + > + if (!IS_ERR(empty)) { > + pcs->main = empty; > + goto do_free; > + } > + > +no_empty: > + localtry_unlock(&s->cpu_sheaves->lock); > + > + /* > + * if we depleted all empty sheaves in the barn or there are > too > + * many full sheaves, free the rest to slab pages > + */ > +fallback: > + __kmem_cache_free_bulk(s, size, p); > + return; > + } > + > +do_free: > + main = pcs->main; > + batch = min(size, s->sheaf_capacity - main->size); > + > + memcpy(main->objects + main->size, p, batch * sizeof(void *)); > + main->size += batch; > + > + localtry_unlock(&s->cpu_sheaves->lock); > + > + stat_add(s, FREE_PCS, batch); > + > + if (batch < size) { > + p += batch; > + size -= batch; > + goto next_batch; > + } > +} > + > #ifndef CONFIG_SLUB_TINY > /* > * Fastpath with forced inlining to produce a kfree and kmem_cache_free that > @@ -4607,7 +5419,10 @@ void slab_free(struct kmem_cache *s, struct slab > *slab, void *object, > memcg_slab_free_hook(s, slab, &object, 1); > alloc_tagging_slab_free_hook(s, slab, &object, 1); > > - if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), > false))) > + if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), > false))) > + return; > + > + if (!s->cpu_sheaves || !free_to_pcs(s, object)) > do_slab_free(s, slab, object, object, 1, addr); > } > > @@ -5033,6 +5848,15 @@ void kmem_cache_free_bulk(struct kmem_cache *s, size_t > size, void **p) > if (!size) > return; > > + /* > + * freeing to sheaves is so incompatible with the detached freelist so > + * once we go that way, we have to do everything differently > + */ > + if (s && s->cpu_sheaves) { > + free_to_pcs_bulk(s, size, p); > + return; > + } > + > do { > struct detached_freelist df; > > @@ -5151,7 +5975,7 @@ static int __kmem_cache_alloc_bulk(struct kmem_cache > *s, gfp_t flags, > int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t > size, > void **p) > { > - int i; > + unsigned int i = 0; > > if (!size) > return 0; > @@ -5160,9 +5984,21 @@ int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, > gfp_t flags, size_t size, > if (unlikely(!s)) > return 0; > > - i = __kmem_cache_alloc_bulk(s, flags, size, p); > - if (unlikely(i == 0)) > - return 0; > + if (s->cpu_sheaves) > + i = alloc_from_pcs_bulk(s, size, p); > + > + if (i < size) { > + unsigned int j = __kmem_cache_alloc_bulk(s, flags, size - i, > p + i); > + /* > + * If we ran out of memory, don't bother with freeing back to > + * the percpu sheaves, we have bigger problems. > + */ > + if (unlikely(j == 0)) { > + if (i > 0) > + __kmem_cache_free_bulk(s, i, p); > + return 0; > + } > + } > > /* > * memcg and kmem_cache debug support and memory initialization. > @@ -5172,11 +6008,11 @@ int kmem_cache_alloc_bulk_noprof(struct kmem_cache > *s, gfp_t flags, size_t size, > slab_want_init_on_alloc(flags, s), s->object_size))) { > return 0; > } > - return i; > + > + return size; > } > EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); > > - > /* > * Object placement in a slab is made very easy because we always start at > * offset 0. If we tune the size of the object to the alignment then we can > @@ -5309,8 +6145,8 @@ static inline int calculate_order(unsigned int size) > return -ENOSYS; > } > > -static void > -init_kmem_cache_node(struct kmem_cache_node *n) > +static bool > +init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn) > { > n->nr_partial = 0; > spin_lock_init(&n->list_lock); > @@ -5320,6 +6156,11 @@ init_kmem_cache_node(struct kmem_cache_node *n) > atomic_long_set(&n->total_objects, 0); > INIT_LIST_HEAD(&n->full); > #endif > + n->barn = barn; > + if (barn) > + barn_init(barn); > + > + return true; > } > > #ifndef CONFIG_SLUB_TINY > @@ -5350,6 +6191,30 @@ static inline int alloc_kmem_cache_cpus(struct > kmem_cache *s) > } > #endif /* CONFIG_SLUB_TINY */ > > +static int init_percpu_sheaves(struct kmem_cache *s) > +{ > + int cpu; > + > + for_each_possible_cpu(cpu) { > + struct slub_percpu_sheaves *pcs; > + int nid; > + > + pcs = per_cpu_ptr(s->cpu_sheaves, cpu); > + > + localtry_lock_init(&pcs->lock); > + > + nid = cpu_to_mem(cpu); > + > + pcs->barn = get_node(s, nid)->barn; > + pcs->main = alloc_empty_sheaf(s, GFP_KERNEL); > + > + if (!pcs->main) > + return -ENOMEM; > + } > + > + return 0; > +} > + > static struct kmem_cache *kmem_cache_node; > > /* > @@ -5385,7 +6250,7 @@ static void early_kmem_cache_node_alloc(int node) > slab->freelist = get_freepointer(kmem_cache_node, n); > slab->inuse = 1; > kmem_cache_node->node[node] = n; > - init_kmem_cache_node(n); > + init_kmem_cache_node(n, NULL); > inc_slabs_node(kmem_cache_node, node, slab->objects); > > /* > @@ -5401,6 +6266,13 @@ static void free_kmem_cache_nodes(struct kmem_cache *s) > struct kmem_cache_node *n; > > for_each_kmem_cache_node(s, node, n) { > + if (n->barn) { > + WARN_ON(n->barn->nr_full); > + WARN_ON(n->barn->nr_empty); > + kfree(n->barn); > + n->barn = NULL; > + } > + > s->node[node] = NULL; > kmem_cache_free(kmem_cache_node, n); > } > @@ -5409,6 +6281,8 @@ static void free_kmem_cache_nodes(struct kmem_cache *s) > void __kmem_cache_release(struct kmem_cache *s) > { > cache_random_seq_destroy(s); > + if (s->cpu_sheaves) > + pcs_destroy(s); > #ifndef CONFIG_SLUB_TINY > free_percpu(s->cpu_slab); > #endif > @@ -5421,20 +6295,27 @@ static int init_kmem_cache_nodes(struct kmem_cache *s) > > for_each_node_mask(node, slab_nodes) { > struct kmem_cache_node *n; > + struct node_barn *barn = NULL; > > if (slab_state == DOWN) { > early_kmem_cache_node_alloc(node); > continue; > } > + > + if (s->cpu_sheaves) { > + barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node); > + > + if (!barn) > + return 0; > + } > + > n = kmem_cache_alloc_node(kmem_cache_node, > GFP_KERNEL, node); > - > - if (!n) { > - free_kmem_cache_nodes(s); > + if (!n) > return 0; > - } > > - init_kmem_cache_node(n); > + init_kmem_cache_node(n, barn); > + > s->node[node] = n; > } > return 1; > @@ -5690,6 +6571,8 @@ int __kmem_cache_shutdown(struct kmem_cache *s) > flush_all_cpus_locked(s); > /* Attempt to free all objects */ > for_each_kmem_cache_node(s, node, n) { > + if (n->barn) > + barn_shrink(s, n->barn); > free_partial(s, n); > if (n->nr_partial || node_nr_slabs(n)) > return 1; > @@ -5893,6 +6776,9 @@ static int __kmem_cache_do_shrink(struct kmem_cache *s) > for (i = 0; i < SHRINK_PROMOTE_MAX; i++) > INIT_LIST_HEAD(promote + i); > > + if (n->barn) > + barn_shrink(s, n->barn); > + > spin_lock_irqsave(&n->list_lock, flags); > > /* > @@ -6005,12 +6891,24 @@ static int slab_mem_going_online_callback(void *arg) > */ > mutex_lock(&slab_mutex); > list_for_each_entry(s, &slab_caches, list) { > + struct node_barn *barn = NULL; > + > /* > * The structure may already exist if the node was previously > * onlined and offlined. > */ > if (get_node(s, nid)) > continue; > + > + if (s->cpu_sheaves) { > + barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid); > + > + if (!barn) { > + ret = -ENOMEM; > + goto out; > + } > + } > + > /* > * XXX: kmem_cache_alloc_node will fallback to other nodes > * since memory is not yet available from the node that > @@ -6021,7 +6919,9 @@ static int slab_mem_going_online_callback(void *arg) > ret = -ENOMEM; > goto out; > } > - init_kmem_cache_node(n); > + > + init_kmem_cache_node(n, barn); > + > s->node[nid] = n; > } > /* > @@ -6240,6 +7140,16 @@ int do_kmem_cache_create(struct kmem_cache *s, const > char *name, > > set_cpu_partial(s); > > + if (args->sheaf_capacity) { > + s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves); > + if (!s->cpu_sheaves) { > + err = -ENOMEM; > + goto out; > + } > + // TODO: increase capacity to grow slab_sheaf up to next > kmalloc size? > + s->sheaf_capacity = args->sheaf_capacity; > + } > + > #ifdef CONFIG_NUMA > s->remote_node_defrag_ratio = 1000; > #endif > @@ -6256,6 +7166,12 @@ int do_kmem_cache_create(struct kmem_cache *s, const > char *name, > if (!alloc_kmem_cache_cpus(s)) > goto out; > > + if (s->cpu_sheaves) { > + err = init_percpu_sheaves(s); > + if (err) > + goto out; > + } > + > err = 0; > > /* Mutex is not taken during early boot */ > @@ -6277,7 +7193,6 @@ int do_kmem_cache_create(struct kmem_cache *s, const > char *name, > __kmem_cache_release(s); > return err; > } > - > #ifdef SLAB_SUPPORTS_SYSFS > static int count_inuse(struct slab *slab) > { > @@ -7055,8 +7970,10 @@ static ssize_t text##_store(struct kmem_cache *s, > \ > } \ > SLAB_ATTR(text); \ > > +STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf); > STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); > STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); > +STAT_ATTR(FREE_PCS, free_cpu_sheaf); > STAT_ATTR(FREE_FASTPATH, free_fastpath); > STAT_ATTR(FREE_SLOWPATH, free_slowpath); > STAT_ATTR(FREE_FROZEN, free_frozen); > @@ -7081,6 +7998,12 @@ STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); > STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); > STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); > STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); > +STAT_ATTR(SHEAF_FLUSH_MAIN, sheaf_flush_main); > +STAT_ATTR(SHEAF_FLUSH_OTHER, sheaf_flush_other); > +STAT_ATTR(SHEAF_REFILL, sheaf_refill); > +STAT_ATTR(SHEAF_SWAP, sheaf_swap); > +STAT_ATTR(SHEAF_ALLOC, sheaf_alloc); > +STAT_ATTR(SHEAF_FREE, sheaf_free); > #endif /* CONFIG_SLUB_STATS */ > > #ifdef CONFIG_KFENCE > @@ -7142,8 +8065,10 @@ static struct attribute *slab_attrs[] = { > &remote_node_defrag_ratio_attr.attr, > #endif > #ifdef CONFIG_SLUB_STATS > + &alloc_cpu_sheaf_attr.attr, > &alloc_fastpath_attr.attr, > &alloc_slowpath_attr.attr, > + &free_cpu_sheaf_attr.attr, > &free_fastpath_attr.attr, > &free_slowpath_attr.attr, > &free_frozen_attr.attr, > @@ -7168,6 +8093,12 @@ static struct attribute *slab_attrs[] = { > &cpu_partial_free_attr.attr, > &cpu_partial_node_attr.attr, > &cpu_partial_drain_attr.attr, > + &sheaf_flush_main_attr.attr, > + &sheaf_flush_other_attr.attr, > + &sheaf_refill_attr.attr, > + &sheaf_swap_attr.attr, > + &sheaf_alloc_attr.attr, > + &sheaf_free_attr.attr, > #endif > #ifdef CONFIG_FAILSLAB > &failslab_attr.attr, > > -- > 2.48.1 >