On 18 Feb 2025, at 10:44, David Hildenbrand wrote: > On 17.02.25 23:05, Zi Yan wrote: >> On 17 Feb 2025, at 16:44, David Hildenbrand wrote: >> >>> On 11.02.25 16:50, Zi Yan wrote: >>>> It is a preparation patch for non-uniform folio split, which always split >>>> a folio into half iteratively, and minimal xarray entry split. >>>> >>>> Currently, xas_split_alloc() and xas_split() always split all slots from a >>>> multi-index entry. They cost the same number of xa_node as the to-be-split >>>> slots. For example, to split an order-9 entry, which takes 2^(9-6)=8 >>>> slots, assuming XA_CHUNK_SHIFT is 6 (!CONFIG_BASE_SMALL), 8 xa_node are >>>> needed. Instead xas_try_split() is intended to be used iteratively to split >>>> the order-9 entry into 2 order-8 entries, then split one order-8 entry, >>>> based on the given index, to 2 order-7 entries, ..., and split one order-1 >>>> entry to 2 order-0 entries. When splitting the order-6 entry and a new >>>> xa_node is needed, xas_try_split() will try to allocate one if possible. >>>> As a result, xas_try_split() would only need one xa_node instead of 8. >>>> >>>> When a new xa_node is needed during the split, xas_try_split() can try to >>>> allocate one but no more. -ENOMEM will be return if a node cannot be >>>> allocated. -EINVAL will be return if a sibling node is split or >>>> cascade split happens, where two or more new nodes are needed, and these >>>> are not supported by xas_try_split(). >>>> >>>> xas_split_alloc() and xas_split() split an order-9 to order-0: >>>> >>>> --------------------------------- >>>> | | | | | | | | | >>>> | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | >>>> | | | | | | | | | >>>> --------------------------------- >>>> | | | | >>>> ------- --- --- ------- >>>> | | ... | | >>>> V V V V >>>> ----------- ----------- ----------- ----------- >>>> | xa_node | | xa_node | ... | xa_node | | xa_node | >>>> ----------- ----------- ----------- ----------- >>>> >>>> xas_try_split() splits an order-9 to order-0: >>>> --------------------------------- >>>> | | | | | | | | | >>>> | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | >>>> | | | | | | | | | >>>> --------------------------------- >>>> | >>>> | >>>> V >>>> ----------- >>>> | xa_node | >>>> ----------- >>>> >>>> Signed-off-by: Zi Yan <z...@nvidia.com> >>>> --- >>>> Documentation/core-api/xarray.rst | 14 ++- >>>> include/linux/xarray.h | 7 ++ >>>> lib/test_xarray.c | 47 +++++++++++ >>>> lib/xarray.c | 136 ++++++++++++++++++++++++++---- >>>> tools/testing/radix-tree/Makefile | 1 + >>>> 5 files changed, 188 insertions(+), 17 deletions(-) >>>> >>>> diff --git a/Documentation/core-api/xarray.rst >>>> b/Documentation/core-api/xarray.rst >>>> index f6a3eef4fe7f..c6c91cbd0c3c 100644 >>>> --- a/Documentation/core-api/xarray.rst >>>> +++ b/Documentation/core-api/xarray.rst >>>> @@ -489,7 +489,19 @@ Storing ``NULL`` into any index of a multi-index >>>> entry will set the >>>> entry at every index to ``NULL`` and dissolve the tie. A multi-index >>>> entry can be split into entries occupying smaller ranges by calling >>>> xas_split_alloc() without the xa_lock held, followed by taking the lock >>>> -and calling xas_split(). >>>> +and calling xas_split() or calling xas_try_split() with xa_lock. The >>>> +difference between xas_split_alloc()+xas_split() and xas_try_alloc() is >>>> +that xas_split_alloc() + xas_split() split the entry from the original >>>> +order to the new order in one shot uniformly, whereas xas_try_split() >>>> +iteratively splits the entry containing the index non-uniformly. >>>> +For example, to split an order-9 entry, which takes 2^(9-6)=8 slots, >>>> +assuming ``XA_CHUNK_SHIFT`` is 6, xas_split_alloc() + xas_split() need >>>> +8 xa_node. xas_try_split() splits the order-9 entry into >>>> +2 order-8 entries, then split one order-8 entry, based on the given index, >>>> +to 2 order-7 entries, ..., and split one order-1 entry to 2 order-0 >>>> entries. >>>> +When splitting the order-6 entry and a new xa_node is needed, >>>> xas_try_split() >>>> +will try to allocate one if possible. As a result, xas_try_split() would >>>> only >>>> +need 1 xa_node instead of 8. >>>> Functions and structures >>>> ======================== >>>> diff --git a/include/linux/xarray.h b/include/linux/xarray.h >>>> index 0b618ec04115..9eb8c7425090 100644 >>>> --- a/include/linux/xarray.h >>>> +++ b/include/linux/xarray.h >>>> @@ -1555,6 +1555,8 @@ int xa_get_order(struct xarray *, unsigned long >>>> index); >>>> int xas_get_order(struct xa_state *xas); >>>> void xas_split(struct xa_state *, void *entry, unsigned int order); >>>> void xas_split_alloc(struct xa_state *, void *entry, unsigned int >>>> order, gfp_t); >>>> +void xas_try_split(struct xa_state *xas, void *entry, unsigned int order, >>>> + gfp_t gfp); >>>> #else >>>> static inline int xa_get_order(struct xarray *xa, unsigned long index) >>>> { >>>> @@ -1576,6 +1578,11 @@ static inline void xas_split_alloc(struct xa_state >>>> *xas, void *entry, >>>> unsigned int order, gfp_t gfp) >>>> { >>>> } >>>> + >>>> +static inline void xas_try_split(struct xa_state *xas, void *entry, >>>> + unsigned int order, gfp_t gfp) >>>> +{ >>>> +} >>>> #endif >>>> /** >>>> diff --git a/lib/test_xarray.c b/lib/test_xarray.c >>>> index 6932a26f4927..598ca38a2f5b 100644 >>>> --- a/lib/test_xarray.c >>>> +++ b/lib/test_xarray.c >>>> @@ -1857,6 +1857,49 @@ static void check_split_1(struct xarray *xa, >>>> unsigned long index, >>>> xa_destroy(xa); >>>> } >>>> +static void check_split_2(struct xarray *xa, unsigned long index, >>>> + unsigned int order, unsigned int new_order) >>>> +{ >>>> + XA_STATE_ORDER(xas, xa, index, new_order); >>>> + unsigned int i, found; >>>> + void *entry; >>>> + >>>> + xa_store_order(xa, index, order, xa, GFP_KERNEL); >>>> + xa_set_mark(xa, index, XA_MARK_1); >>>> + >>>> + xas_lock(&xas); >>>> + xas_try_halve(&xas, xa, order, GFP_KERNEL); >>>> + if (((new_order / XA_CHUNK_SHIFT) < (order / XA_CHUNK_SHIFT)) && >>>> + new_order < order - 1) { >>>> + XA_BUG_ON(xa, !xas_error(&xas) || xas_error(&xas) != -EINVAL); >>>> + xas_unlock(&xas); >>>> + goto out; >>>> + } >>>> + for (i = 0; i < (1 << order); i += (1 << new_order)) >>>> + __xa_store(xa, index + i, xa_mk_index(index + i), 0); >>>> + xas_unlock(&xas); >>>> + >>>> + for (i = 0; i < (1 << order); i++) { >>>> + unsigned int val = index + (i & ~((1 << new_order) - 1)); >>>> + XA_BUG_ON(xa, xa_load(xa, index + i) != xa_mk_index(val)); >>>> + } >>>> + >>>> + xa_set_mark(xa, index, XA_MARK_0); >>>> + XA_BUG_ON(xa, !xa_get_mark(xa, index, XA_MARK_0)); >>>> + >>>> + xas_set_order(&xas, index, 0); >>>> + found = 0; >>>> + rcu_read_lock(); >>>> + xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_1) { >>>> + found++; >>>> + XA_BUG_ON(xa, xa_is_internal(entry)); >>>> + } >>>> + rcu_read_unlock(); >>>> + XA_BUG_ON(xa, found != 1 << (order - new_order)); >>>> +out: >>>> + xa_destroy(xa); >>>> +} >>>> + >>>> static noinline void check_split(struct xarray *xa) >>>> { >>>> unsigned int order, new_order; >>>> @@ -1868,6 +1911,10 @@ static noinline void check_split(struct xarray *xa) >>>> check_split_1(xa, 0, order, new_order); >>>> check_split_1(xa, 1UL << order, order, >>>> new_order); >>>> check_split_1(xa, 3UL << order, order, >>>> new_order); >>>> + >>>> + check_split_2(xa, 0, order, new_order); >>>> + check_split_2(xa, 1UL << order, order, new_order); >>>> + check_split_2(xa, 3UL << order, order, new_order); >>>> } >>>> } >>>> } >>>> diff --git a/lib/xarray.c b/lib/xarray.c >>>> index 116e9286c64e..c38beca77830 100644 >>>> --- a/lib/xarray.c >>>> +++ b/lib/xarray.c >>>> @@ -1007,6 +1007,31 @@ static void node_set_marks(struct xa_node *node, >>>> unsigned int offset, >>>> } >>>> } >>>> +static struct xa_node *__xas_alloc_node_for_split(struct xa_state *xas, >>>> + void *entry, gfp_t gfp) >>>> +{ >>>> + unsigned int i; >>>> + void *sibling = NULL; >>>> + struct xa_node *node; >>>> + unsigned int mask = xas->xa_sibs; >>>> + >>>> + node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); >>>> + if (!node) >>>> + return NULL; >>>> + node->array = xas->xa; >>>> + for (i = 0; i < XA_CHUNK_SIZE; i++) { >>>> + if ((i & mask) == 0) { >>>> + RCU_INIT_POINTER(node->slots[i], entry); >>>> + sibling = xa_mk_sibling(i); >>>> + } else { >>>> + RCU_INIT_POINTER(node->slots[i], sibling); >>>> + } >>>> + } >>>> + RCU_INIT_POINTER(node->parent, xas->xa_alloc); >>>> + >>>> + return node; >>>> +} >>>> + >>>> /** >>>> * xas_split_alloc() - Allocate memory for splitting an entry. >>>> * @xas: XArray operation state. >>>> @@ -1025,7 +1050,6 @@ void xas_split_alloc(struct xa_state *xas, void >>>> *entry, unsigned int order, >>>> gfp_t gfp) >>>> { >>>> unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; >>>> - unsigned int mask = xas->xa_sibs; >>>> /* XXX: no support for splitting really large entries yet */ >>>> if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order)) >>>> @@ -1034,23 +1058,9 @@ void xas_split_alloc(struct xa_state *xas, void >>>> *entry, unsigned int order, >>>> return; >>>> do { >>>> - unsigned int i; >>>> - void *sibling = NULL; >>>> - struct xa_node *node; >>>> - >>>> - node = kmem_cache_alloc_lru(radix_tree_node_cachep, >>>> xas->xa_lru, gfp); >>>> + struct xa_node *node = __xas_alloc_node_for_split(xas, entry, >>>> gfp); >>>> if (!node) >>>> goto nomem; >>>> - node->array = xas->xa; >>>> - for (i = 0; i < XA_CHUNK_SIZE; i++) { >>>> - if ((i & mask) == 0) { >>>> - RCU_INIT_POINTER(node->slots[i], entry); >>>> - sibling = xa_mk_sibling(i); >>>> - } else { >>>> - RCU_INIT_POINTER(node->slots[i], sibling); >>>> - } >>>> - } >>>> - RCU_INIT_POINTER(node->parent, xas->xa_alloc); >>>> xas->xa_alloc = node; >>>> } while (sibs-- > 0); >>>> @@ -1122,6 +1132,100 @@ void xas_split(struct xa_state *xas, void >>>> *entry, unsigned int order) >>>> xas_update(xas, node); >>>> } >>>> EXPORT_SYMBOL_GPL(xas_split); >>>> + >>>> +/** >>>> + * xas_try_split() - Try to split a multi-index entry. >>>> + * @xas: XArray operation state. >>>> + * @entry: New entry to store in the array. >>>> + * @order: Current entry order. >>>> + * @gfp: Memory allocation flags. >>>> + * >>>> + * The size of the new entries is set in @xas. The value in @entry is >>>> + * copied to all the replacement entries. If and only if one xa_node >>>> needs to >>>> + * be allocated, the function will use @gfp to get one. If more xa_node >>>> are >>>> + * needed, the function gives EINVAL error. >>>> + * >>>> + * Context: Any context. The caller should hold the xa_lock. >>>> + */ >>>> +void xas_try_split(struct xa_state *xas, void *entry, unsigned int order, >>>> + gfp_t gfp) >>>> +{ >>>> + unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; >>>> + unsigned int offset, marks; >>>> + struct xa_node *node; >>>> + void *curr = xas_load(xas); >>>> + int values = 0; >>>> + >>>> + node = xas->xa_node; >>>> + if (xas_top(node)) >>>> + return; >>>> + >>>> + if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) >>>> + gfp |= __GFP_ACCOUNT; >>>> + >>>> + marks = node_get_marks(node, xas->xa_offset); >>>> + >>>> + offset = xas->xa_offset + sibs; >>>> + do { >>>> + if (xas->xa_shift < node->shift) { >>>> + struct xa_node *child = xas->xa_alloc; >>>> + unsigned int expected_sibs = >>>> + (1 << ((order - 1) % XA_CHUNK_SHIFT)) - 1; >>>> + >>>> + /* >>>> + * No support for splitting sibling entries >>>> + * (horizontally) or cascade split (vertically), which >>>> + * requires two or more new xa_nodes. >>>> + * Since if one xa_node allocation fails, >>>> + * it is hard to free the prior allocations. >>>> + */ >>>> + if (sibs || xas->xa_sibs != expected_sibs) { >>>> + xas_destroy(xas); >>>> + xas_set_err(xas, -EINVAL); >>>> + return; >>>> + } >>>> + >>>> + if (!child) { >>>> + child = __xas_alloc_node_for_split(xas, entry, >>>> + gfp); >>>> + if (!child) { >>>> + xas_destroy(xas); >>>> + xas_set_err(xas, -ENOMEM); >>>> + return; >>>> + } >>>> + } >>> >>> No expert on this, just wondering ... >>> >>> ... what is the effect if we halfway-through fail the split? Is it okay to >>> leave that "partially split" thing in place? Can callers deal with that? >> >> Good question. >> > > Let me rephrase: In __split_unmapped_folio(), we call xas_try_split(). If > that fails, we stop the split and effectively skip over the > __split_folio_to_order(). The folio remains unsplit (no order change: > old_order).
Right. To be more specific, in !uniform_split case, the original folio can be split and old_order can change. Namely, if the caller wants to split an order-9, folio_split() can split it to 2 order-6s, 1 order-7, and 1 order-8 then cannot allocate a new xa_node due to memory constrains and stop. The caller will get 2 order-6s, 1 order-7, and 1 order-8 and folio_split() returns -ENOMEM. The caller needs to handle this situation, although it should be quite rare. Because unless the caller is splitting order-12 (or even higher orders) to order-0, at most 1 xa_node is needed. > > xas_try_split() was instructed to split from old_order -> split_order. > > xas_try_split() documents that: "The value in @entry is copied to all the > replacement entries.", meaning after the split, all entries will be pointing > at the folio. Right. > > Now, can it happen that xas_try_split() would ever perform a partial split in > any way, when invoked from __split_unmapped_folio(), such that we run into > the do { } while(); loop and fail with -ENOMEM after already having performed > changes -- xas_update(). > > Or is that simply impossible? Right. It is impossible. xas_try_split() either splits by copying @entry to all the replacement entries, or is trying to allocate a new xa_node, which can result in -ENOMEM. These two will not be mixed. > > Maybe it's just the do { } while(); loop in there that is confusing me. > (again, no expert) Yeah, that the do while loop is confusing. Let me restructure the code so that the do while loop only runs in the @entry copy case not the xa_node allocation case. > >> xas_try_split() imposes what kind of split it does and is usually used to >> split from order N to order N-1: > > You mean that old_order -> split_order will in the case of > __split_unmapped_folio() always be a difference of 1? Yes for !uniform_split case. For uniform_split case (split_huge_page*() uses), xas_split() is used and all required new xa_node are preallocated by xas_split_alloc() in __folio_split(). > >> >> 1. when N is a multiplier of XA_CHUNK_SHIFT, a new xa_node is needed, so >> either child (namely xas->xa_alloc) is not NULL, meaning someone called >> xa_nomem() to allocate a xa_node before xas_try_split() or child is NULL >> and an allocation is needed. If child is still NULL after the allocation, >> meaning we are out of memory, no split is done; >> >> 2. when N is not, no new xa_node is needed, xas_try_split() just rewrites >> existing slot values to perform the split (the code after the hunk above). >> No fail will happen. For this split, since no new xa_node is needed, >> the caller is actually allowed to split from N to a value smaller than >> N-1 as long as N-1 is >= (N - N % XA_CHUNK_SHIFT). >> >> >> Various checks make sure xas_try_split() only sees the two above situation: >> >> a. "xas->xa_shift < node->shift" means the split crosses XA_CHUNK_SHIFT, >> at least 1 new xa_node is needed; the else branch only handles the case >> 2 above; >> >> b. for the then branch the "if (sibs || xas->xa_sibs != expected_sibs)" >> check makes sure N is a multiplier of XA_CHUNK_SHIFT and the new order >> has to be N-1. In "if (sibs || xas->xa_sibs != expected_sibs)", >> "sibs != 0" means the from order N covers more than 1 slot, so more than 1 >> new xa_node is needed, "xas->xa_sibs != expected_sibs" makes sure >> the new order is N-1 (you can see it from how expected_sibs is assigned). > > Thanks! > >> >> Let me know if you have any other question. > > Thanks for the details! Thank you for checking the code. :) Best Regards, Yan, Zi