This adds compression

Signed-off-by: Konstantin Komarov <almaz.alexandrov...@paragon-software.com>
---
 fs/ntfs3/lib/common_defs.h       | 196 +++++++++++
 fs/ntfs3/lib/decompress_common.c | 314 +++++++++++++++++
 fs/ntfs3/lib/decompress_common.h | 558 +++++++++++++++++++++++++++++++
 fs/ntfs3/lib/lzx_common.c        | 204 +++++++++++
 fs/ntfs3/lib/lzx_common.h        |  31 ++
 fs/ntfs3/lib/lzx_constants.h     | 113 +++++++
 fs/ntfs3/lib/lzx_decompress.c    | 553 ++++++++++++++++++++++++++++++
 fs/ntfs3/lib/xpress_constants.h  |  23 ++
 fs/ntfs3/lib/xpress_decompress.c | 165 +++++++++
 fs/ntfs3/lznt.c                  | 452 +++++++++++++++++++++++++
 10 files changed, 2609 insertions(+)
 create mode 100644 fs/ntfs3/lib/common_defs.h
 create mode 100644 fs/ntfs3/lib/decompress_common.c
 create mode 100644 fs/ntfs3/lib/decompress_common.h
 create mode 100644 fs/ntfs3/lib/lzx_common.c
 create mode 100644 fs/ntfs3/lib/lzx_common.h
 create mode 100644 fs/ntfs3/lib/lzx_constants.h
 create mode 100644 fs/ntfs3/lib/lzx_decompress.c
 create mode 100644 fs/ntfs3/lib/xpress_constants.h
 create mode 100644 fs/ntfs3/lib/xpress_decompress.c
 create mode 100644 fs/ntfs3/lznt.c

diff --git a/fs/ntfs3/lib/common_defs.h b/fs/ntfs3/lib/common_defs.h
new file mode 100644
index 000000000000..2114e37872fb
--- /dev/null
+++ b/fs/ntfs3/lib/common_defs.h
@@ -0,0 +1,196 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (C) 2012-2016 Eric Biggers
+ *
+ * Adapted for linux kernel by Alexander Mamaev:
+ * - remove implementations of get_unaligned_
+ * - remove SSE and AVX instructions
+ * - assume GCC is always defined
+ * - inlined aligned_malloc/aligned_free
+ * - ISO C90
+ * - linux kernel code style
+ */
+
+#ifndef _COMMON_DEFS_H
+#define _COMMON_DEFS_H
+
+#include <linux/string.h>
+#include <linux/compiler.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <asm/unaligned.h>
+
+
+/* ========================================================================== 
*/
+/*                             Type definitions                              */
+/* ========================================================================== 
*/
+
+/*
+ * Type of a machine word.  'u32 long' would be logical, but that is only
+ * 32 bits on x86_64 Windows.  The same applies to 'uint_fast32_t'.  So the 
best
+ * we can do without a bunch of #ifdefs appears to be 'size_t'.
+ */
+
+#define WORDBYTES      sizeof(size_t)
+#define WORDBITS       (8 * WORDBYTES)
+
+/* ========================================================================== 
*/
+/*                        Compiler-specific definitions                      */
+/* ========================================================================== 
*/
+
+#  define forceinline          __always_inline
+#  define _aligned_attribute(n) __aligned(n)
+#  define bsr32(n)             (31 - __builtin_clz(n))
+#  define bsr64(n)             (63 - __builtin_clzll(n))
+#  define bsf32(n)             __builtin_ctz(n)
+#  define bsf64(n)             __builtin_ctzll(n)
+
+/* STATIC_ASSERT() - verify the truth of an expression at compilation time */
+#define STATIC_ASSERT(expr)    ((void)sizeof(char[1 - 2 * !(expr)]))
+
+/* STATIC_ASSERT_ZERO() - verify the truth of an expression at compilation time
+ * and also produce a result of value '0' to be used in constant expressions
+ */
+#define STATIC_ASSERT_ZERO(expr) ((int)sizeof(char[-!(expr)]))
+
+/* UNALIGNED_ACCESS_IS_FAST should be defined to 1 if unaligned memory accesses
+ * can be performed efficiently on the target platform.
+ */
+#if defined(__x86_64__) || defined(__i386__) || 
defined(__ARM_FEATURE_UNALIGNED)
+#  define UNALIGNED_ACCESS_IS_FAST 1
+#else
+#  define UNALIGNED_ACCESS_IS_FAST 0
+#endif
+
+/* ========================================================================== 
*/
+/*                         Unaligned memory accesses                         */
+/* ========================================================================== 
*/
+
+#define load_word_unaligned(p) get_unaligned((const size_t *)(p))
+#define store_word_unaligned(v, p) put_unaligned((v), (size_t *)(p))
+
+
+/* ========================================================================== 
*/
+/*                            Bit scan functions                             */
+/* ========================================================================== 
*/
+
+/*
+ * Bit Scan Reverse (BSR) - find the 0-based index (relative to the least
+ * significant end) of the *most* significant 1 bit in the input value.  The
+ * input value must be nonzero!
+ */
+
+#ifndef bsr32
+static forceinline u32
+bsr32(u32 v)
+{
+       u32 bit = 0;
+
+       while ((v >>= 1) != 0)
+               bit++;
+       return bit;
+}
+#endif
+
+#ifndef bsr64
+static forceinline u32
+bsr64(u64 v)
+{
+       u32 bit = 0;
+
+       while ((v >>= 1) != 0)
+               bit++;
+       return bit;
+}
+#endif
+
+static forceinline u32
+bsrw(size_t v)
+{
+       STATIC_ASSERT(WORDBITS == 32 || WORDBITS == 64);
+       if (WORDBITS == 32)
+               return bsr32(v);
+       else
+               return bsr64(v);
+}
+
+/*
+ * Bit Scan Forward (BSF) - find the 0-based index (relative to the least
+ * significant end) of the *least* significant 1 bit in the input value.  The
+ * input value must be nonzero!
+ */
+
+#ifndef bsf32
+static forceinline u32
+bsf32(u32 v)
+{
+       u32 bit;
+
+       for (bit = 0; !(v & 1); bit++, v >>= 1)
+               ;
+       return bit;
+}
+#endif
+
+#ifndef bsf64
+static forceinline u32
+bsf64(u64 v)
+{
+       u32 bit;
+
+       for (bit = 0; !(v & 1); bit++, v >>= 1)
+               ;
+       return bit;
+}
+#endif
+
+static forceinline u32
+bsfw(size_t v)
+{
+       STATIC_ASSERT(WORDBITS == 32 || WORDBITS == 64);
+       if (WORDBITS == 32)
+               return bsf32(v);
+       else
+               return bsf64(v);
+}
+
+/* Return the log base 2 of 'n', rounded up to the nearest integer. */
+static forceinline u32
+ilog2_ceil(size_t n)
+{
+       if (n <= 1)
+               return 0;
+       return 1 + bsrw(n - 1);
+}
+
+/* ========================================================================== 
*/
+/*                         Aligned memory allocation                         */
+/* ========================================================================== 
*/
+
+static forceinline void *
+aligned_malloc(size_t size, size_t alignment)
+{
+       const uintptr_t mask = alignment - 1;
+       char *ptr = NULL;
+       char *raw_ptr;
+
+       raw_ptr = kmalloc(mask + sizeof(size_t) + size, GFP_NOFS);
+       if (raw_ptr) {
+               ptr = (char *)raw_ptr + sizeof(size_t);
+               ptr = (void *)(((uintptr_t)ptr + mask) & ~mask);
+               *((size_t *)ptr - 1) = ptr - raw_ptr;
+       }
+       return ptr;
+}
+
+static forceinline void
+aligned_free(void *ptr)
+{
+       if (ptr)
+               kfree((char *)ptr - *((size_t *)ptr - 1));
+}
+
+extern void *aligned_malloc(size_t size, size_t alignment);
+extern void aligned_free(void *ptr);
+
+#endif /* _COMMON_DEFS_H */
diff --git a/fs/ntfs3/lib/decompress_common.c b/fs/ntfs3/lib/decompress_common.c
new file mode 100644
index 000000000000..f6381d214f48
--- /dev/null
+++ b/fs/ntfs3/lib/decompress_common.c
@@ -0,0 +1,314 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * decompress_common.c
+ *
+ * Code for decompression shared among multiple compression formats.
+ *
+ * The following copying information applies to this specific source code file:
+ *
+ * Written in 2012-2016 by Eric Biggers <ebigge...@gmail.com>
+ *
+ * To the extent possible under law, the author(s) have dedicated all copyright
+ * and related and neighboring rights to this software to the public domain
+ * worldwide via the Creative Commons Zero 1.0 Universal Public Domain
+ * Dedication (the "CC0").
+ *
+ * This software is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
FITNESS
+ * FOR A PARTICULAR PURPOSE. See the CC0 for more details.
+ *
+ * You should have received a copy of the CC0 along with this software; if not
+ * see <http://creativecommons.org/publicdomain/zero/1.0/>.
+ */
+
+#include "decompress_common.h"
+
+/*
+ * make_huffman_decode_table() -
+ *
+ * Given an alphabet of symbols and the length of each symbol's codeword in a
+ * canonical prefix code, build a table for quickly decoding symbols that were
+ * encoded with that code.
+ *
+ * A _prefix code_ is an assignment of bitstrings called _codewords_ to symbols
+ * such that no whole codeword is a prefix of any other.  A prefix code might 
be
+ * a _Huffman code_, which means that it is an optimum prefix code for a given
+ * list of symbol frequencies and was generated by the Huffman algorithm.
+ * Although the prefix codes processed here will ordinarily be "Huffman codes",
+ * strictly speaking the decoder cannot know whether a given code was actually
+ * generated by the Huffman algorithm or not.
+ *
+ * A prefix code is _canonical_ if and only if a longer codeword never
+ * lexicographically precedes a shorter codeword, and the lexicographic 
ordering
+ * of codewords of equal length is the same as the lexicographic ordering of 
the
+ * corresponding symbols.  The advantage of using a canonical prefix code is
+ * that the codewords can be reconstructed from only the symbol => codeword
+ * length mapping.  This eliminates the need to transmit the codewords
+ * explicitly.  Instead, they can be enumerated in lexicographic order after
+ * sorting the symbols primarily by increasing codeword length and secondarily
+ * by increasing symbol value.
+ *
+ * However, the decoder's real goal is to decode symbols with the code, not 
just
+ * generate the list of codewords.  Consequently, this function directly builds
+ * a table for efficiently decoding symbols using the code.  The basic idea is
+ * that given the next 'max_codeword_len' bits of input, the decoder can look 
up
+ * the next decoded symbol by indexing a table containing '2^max_codeword_len'
+ * entries.  A codeword with length 'max_codeword_len' will have exactly one
+ * entry in this table, whereas a codeword shorter than 'max_codeword_len' will
+ * have multiple entries in this table.  Precisely, a codeword of length 'n'
+ * will have '2^(max_codeword_len - n)' entries.  The index of each such entry,
+ * considered as a bitstring of length 'max_codeword_len', will contain the
+ * corresponding codeword as a prefix.
+ *
+ * That's the basic idea, but we extend it in two ways:
+ *
+ * - Often the maximum codeword length is too long for it to be efficient to
+ *   build the full decode table whenever a new code is used.  Instead, we 
build
+ *   a "root" table using only '2^table_bits' entries, where 'table_bits <=
+ *   max_codeword_len'.  Then, a lookup of 'table_bits' bits produces either a
+ *   symbol directly (for codewords not longer than 'table_bits'), or the index
+ *   of a subtable which must be indexed with additional bits of input to fully
+ *   decode the symbol (for codewords longer than 'table_bits').
+ *
+ * - Whenever the decoder decodes a symbol, it needs to know the codeword 
length
+ *   so that it can remove the appropriate number of input bits.  The obvious
+ *   solution would be to simply retain the codeword lengths array and use the
+ *   decoded symbol as an index into it.  However, that would require two array
+ *   accesses when decoding each symbol.  Our strategy is to instead store the
+ *   codeword length directly in the decode table entry along with the symbol.
+ *
+ * See MAKE_DECODE_TABLE_ENTRY() for full details on the format of decode table
+ * entries, and see read_huffsym() for full details on how symbols are decoded.
+ *
+ * @decode_table:
+ *     The array in which to build the decode table.  This must have been
+ *     declared by the DECODE_TABLE() macro.  This may alias @lens, since all
+ *     @lens are consumed before the decode table is written to.
+ *
+ * @num_syms:
+ *     The number of symbols in the alphabet.
+ *
+ * @table_bits:
+ *     The log base 2 of the number of entries in the root table.
+ *
+ * @lens:
+ *     An array of length @num_syms, indexed by symbol, that gives the length
+ *     of the codeword, in bits, for each symbol.  The length can be 0, which
+ *     means that the symbol does not have a codeword assigned.  In addition,
+ *     @lens may alias @decode_table, as noted above.
+ *
+ * @max_codeword_len:
+ *     The maximum codeword length permitted for this code.  All entries in
+ *     'lens' must be less than or equal to this value.
+ *
+ * @working_space
+ *     A temporary array that was declared with DECODE_TABLE_WORKING_SPACE().
+ *
+ * Returns 0 on success, or -1 if the lengths do not form a valid prefix code.
+ */
+int
+make_huffman_decode_table(u16 decode_table[], u32 num_syms,
+                         u32 table_bits, const u8 lens[],
+                         u32 max_codeword_len, u16 working_space[])
+{
+       u16 * const len_counts = &working_space[0];
+       u16 * const offsets = &working_space[1 * (max_codeword_len + 1)];
+       u16 * const sorted_syms = &working_space[2 * (max_codeword_len + 1)];
+       s32 remainder = 1;
+       void *entry_ptr = decode_table;
+       u32 codeword_len = 1;
+       u32 sym_idx;
+       u32 codeword;
+       u32 subtable_pos;
+       u32 subtable_bits;
+       u32 subtable_prefix;
+       u32 len;
+       u32 sym;
+       u32 stores_per_loop;
+
+       /* Count how many codewords have each length, including 0.  */
+       for (len = 0; len <= max_codeword_len; len++)
+               len_counts[len] = 0;
+       for (sym = 0; sym < num_syms; sym++)
+               len_counts[lens[sym]]++;
+
+       /* It is already guaranteed that all lengths are <= max_codeword_len,
+        * but it cannot be assumed they form a complete prefix code.  A
+        * codeword of length n should require a proportion of the codespace
+        * equaling (1/2)^n.  The code is complete if and only if, by this
+        * measure, the codespace is exactly filled by the lengths.
+        */
+       for (len = 1; len <= max_codeword_len; len++) {
+               remainder = (remainder << 1) - len_counts[len];
+               /* Do the lengths overflow the codespace? */
+               if (unlikely(remainder < 0))
+                       return -1;
+       }
+
+       if (remainder != 0) {
+               /* The lengths do not fill the codespace; that is, they form an
+                * incomplete code.  This is permitted only if the code is empty
+                * (contains no symbols).
+                */
+
+               if (unlikely(remainder != 1U << max_codeword_len))
+                       return -1;
+
+               /* The code is empty.  When processing a well-formed stream, the
+                * decode table need not be initialized in this case.  However,
+                * we cannot assume the stream is well-formed, so we must
+                * initialize the decode table anyway.  Setting all entries to 0
+                * makes the decode table always produce symbol '0' without
+                * consuming any bits, which is good enough.
+                */
+               memset(decode_table, 0, sizeof(decode_table[0]) << table_bits);
+               return 0;
+       }
+
+       /* Sort the symbols primarily by increasing codeword length and
+        * secondarily by increasing symbol value.
+        */
+
+       /* Initialize 'offsets' so that 'offsets[len]' is the number of
+        * codewords shorter than 'len' bits, including length 0.
+        */
+       offsets[0] = 0;
+       for (len = 0; len < max_codeword_len; len++)
+               offsets[len + 1] = offsets[len] + len_counts[len];
+
+       /* Use the 'offsets' array to sort the symbols. */
+       for (sym = 0; sym < num_syms; sym++)
+               sorted_syms[offsets[lens[sym]]++] = sym;
+
+       /*
+        * Fill the root table entries for codewords no longer than table_bits.
+        *
+        * The table will start with entries for the shortest codeword(s), which
+        * will have the most entries.  From there, the number of entries per
+        * codeword will decrease.  As an optimization, we may begin filling
+        * entries with SSE2 vector accesses (8 entries/store), then change to
+        * word accesses (2 or 4 entries/store), then change to 16-bit accesses
+        * (1 entry/store).
+        */
+       sym_idx = offsets[0];
+
+       /* Fill entries one word (2 or 4 entries) at a time. */
+       for (stores_per_loop = (1U << (table_bits - codeword_len)) /
+                                       (WORDBYTES / sizeof(decode_table[0]));
+            stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1){
+               u32 end_sym_idx = sym_idx + len_counts[codeword_len];
+
+               for (; sym_idx < end_sym_idx; sym_idx++) {
+                       /* Accessing the array of u16 as u32 or u64 would
+                        * violate strict aliasing and would require compiling
+                        * the code with -fno-strict-aliasing to guarantee
+                        * correctness.  To work around this problem, use the
+                        * gcc 'may_alias' extension.
+                        */
+                       size_t v = repeat_u16(
+                               MAKE_DECODE_TABLE_ENTRY(sorted_syms[sym_idx],
+                                                       codeword_len));
+                       u32 n = stores_per_loop;
+
+                       do {
+                               *(size_t __attribute__((may_alias)) *)entry_ptr 
= v;
+                               entry_ptr += sizeof(v);
+                       } while (--n);
+               }
+       }
+
+       /* Fill entries one at a time. */
+       for (stores_per_loop = (1U << (table_bits - codeword_len));
+            stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1){
+               u32 end_sym_idx = sym_idx + len_counts[codeword_len];
+
+               for (; sym_idx < end_sym_idx; sym_idx++) {
+                       u16 v = MAKE_DECODE_TABLE_ENTRY(sorted_syms[sym_idx],
+                                                       codeword_len);
+                       u32 n = stores_per_loop;
+
+                       do {
+                               *(u16 *)entry_ptr = v;
+                               entry_ptr += sizeof(v);
+                       } while (--n);
+               }
+       }
+
+       /* If all symbols were processed, then no subtables are required. */
+       if (sym_idx == num_syms)
+               return 0;
+
+       /* At least one subtable is required.  Process the remaining symbols. */
+       codeword = ((u16 *)entry_ptr - decode_table) << 1;
+       subtable_pos = 1U << table_bits;
+       subtable_bits = table_bits;
+       subtable_prefix = -1;
+       do {
+               u32 prefix;
+               u16 entry;
+               u32 n;
+
+               while (len_counts[codeword_len] == 0) {
+                       codeword_len++;
+                       codeword <<= 1;
+               }
+
+               prefix = codeword >> (codeword_len - table_bits);
+
+               /* Start a new subtable if the first 'table_bits' bits of the
+                * codeword don't match the prefix for the previous subtable, or
+                * if this will be the first subtable.
+                */
+               if (prefix != subtable_prefix) {
+
+                       subtable_prefix = prefix;
+
+                       /*
+                        * Calculate the subtable length.  If the codeword
+                        * length exceeds 'table_bits' by n, then the subtable
+                        * needs at least 2^n entries.  But it may need more; if
+                        * there are fewer than 2^n codewords of length
+                        * 'table_bits + n' remaining, then n will need to be
+                        * incremented to bring in longer codewords until the
+                        * subtable can be filled completely.  Note that it
+                        * always will, eventually, be possible to fill the
+                        * subtable, since it was previously verified that the
+                        * code is complete.
+                        */
+                       subtable_bits = codeword_len - table_bits;
+                       remainder = (s32)1 << subtable_bits;
+                       for (;;) {
+                               remainder -= len_counts[table_bits +
+                                                       subtable_bits];
+                               if (remainder <= 0)
+                                       break;
+                               subtable_bits++;
+                               remainder <<= 1;
+                       }
+
+                       /* Create the entry that points from the root table to
+                        * the subtable.  This entry contains the index of the
+                        * start of the subtable and the number of bits with
+                        * which the subtable is indexed (the log base 2 of the
+                        * number of entries it contains).
+                        */
+                       decode_table[subtable_prefix] =
+                               MAKE_DECODE_TABLE_ENTRY(subtable_pos,
+                                                       subtable_bits);
+               }
+
+               /* Fill the subtable entries for this symbol. */
+               entry = MAKE_DECODE_TABLE_ENTRY(sorted_syms[sym_idx],
+                                                   codeword_len - table_bits);
+               n = 1U << (subtable_bits - (codeword_len -
+                                                    table_bits));
+               do {
+                       decode_table[subtable_pos++] = entry;
+               } while (--n);
+
+               len_counts[codeword_len]--;
+               codeword++;
+       } while (++sym_idx < num_syms);
+
+       return 0;
+}
diff --git a/fs/ntfs3/lib/decompress_common.h b/fs/ntfs3/lib/decompress_common.h
new file mode 100644
index 000000000000..11f644687395
--- /dev/null
+++ b/fs/ntfs3/lib/decompress_common.h
@@ -0,0 +1,558 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+/*
+ * decompress_common.h
+ *
+ * Header for decompression code shared by multiple compression formats.
+ *
+ * The following copying information applies to this specific source code file:
+ *
+ * Written in 2012-2016 by Eric Biggers <ebigge...@gmail.com>
+ *
+ * To the extent possible under law, the author(s) have dedicated all copyright
+ * and related and neighboring rights to this software to the public domain
+ * worldwide via the Creative Commons Zero 1.0 Universal Public Domain
+ * Dedication (the "CC0").
+ *
+ * This software is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
FITNESS
+ * FOR A PARTICULAR PURPOSE. See the CC0 for more details.
+ *
+ * You should have received a copy of the CC0 along with this software; if not
+ * see <http://creativecommons.org/publicdomain/zero/1.0/>.
+ */
+
+#ifndef _DECOMPRESS_COMMON_H
+#define _DECOMPRESS_COMMON_H
+
+#include "common_defs.h"
+
+/******************************************************************************/
+/*                   Input bitstream for XPRESS and LZX                       
*/
+/*----------------------------------------------------------------------------*/
+
+/* Structure that encapsulates a block of in-memory data being interpreted as a
+ * stream of bits, optionally with interwoven literal bytes.  Bits are assumed
+ * to be stored in little endian 16-bit coding units, with the bits ordered 
high
+ * to low.
+ */
+struct input_bitstream {
+
+       /* Bits that have been read from the input buffer.  The bits are
+        * left-justified; the next bit is always bit 31.
+        */
+       u32 bitbuf;
+
+       /* Number of bits currently held in @bitbuf.  */
+       u32 bitsleft;
+
+       /* Pointer to the next byte to be retrieved from the input buffer.  */
+       const u8 *next;
+
+       /* Pointer past the end of the input buffer.  */
+       const u8 *end;
+};
+
+/* Initialize a bitstream to read from the specified input buffer.  */
+static forceinline void
+init_input_bitstream(struct input_bitstream *is, const void *buffer, u32 size)
+{
+       is->bitbuf = 0;
+       is->bitsleft = 0;
+       is->next = buffer;
+       is->end = is->next + size;
+}
+
+/* Note: for performance reasons, the following methods don't return error 
codes
+ * to the caller if the input buffer is overrun.  Instead, they just assume 
that
+ * all overrun data is zeroes.  This has no effect on well-formed compressed
+ * data.  The only disadvantage is that bad compressed data may go undetected,
+ * but even this is irrelevant if higher level code checksums the uncompressed
+ * data anyway.
+ */
+
+/* Ensure the bit buffer variable for the bitstream contains at least @num_bits
+ * bits.  Following this, bitstream_peek_bits() and/or bitstream_remove_bits()
+ * may be called on the bitstream to peek or remove up to @num_bits bits.
+ */
+static forceinline void
+bitstream_ensure_bits(struct input_bitstream *is, const u32 num_bits)
+{
+       /* This currently works for at most 17 bits.  */
+
+       if (is->bitsleft >= num_bits)
+               return;
+
+       if (unlikely(is->end - is->next < 2))
+               goto overflow;
+
+       is->bitbuf |= (u32)get_unaligned_le16(is->next) << (16 - is->bitsleft);
+       is->next += 2;
+       is->bitsleft += 16;
+
+       if (unlikely(num_bits == 17 && is->bitsleft == 16)) {
+               if (unlikely(is->end - is->next < 2))
+                       goto overflow;
+
+               is->bitbuf |= (u32)get_unaligned_le16(is->next);
+               is->next += 2;
+               is->bitsleft = 32;
+       }
+
+       return;
+
+overflow:
+       is->bitsleft = 32;
+}
+
+/* Return the next @num_bits bits from the bitstream, without removing them.
+ * There must be at least @num_bits remaining in the buffer variable, from a
+ * previous call to bitstream_ensure_bits().
+ */
+static forceinline u32
+bitstream_peek_bits(const struct input_bitstream *is, const u32 num_bits)
+{
+       return (is->bitbuf >> 1) >> (sizeof(is->bitbuf) * 8 - num_bits - 1);
+}
+
+/* Remove @num_bits from the bitstream.  There must be at least @num_bits
+ * remaining in the buffer variable, from a previous call to
+ * bitstream_ensure_bits().
+ */
+static forceinline void
+bitstream_remove_bits(struct input_bitstream *is, u32 num_bits)
+{
+       is->bitbuf <<= num_bits;
+       is->bitsleft -= num_bits;
+}
+
+/* Remove and return @num_bits bits from the bitstream.  There must be at least
+ * @num_bits remaining in the buffer variable, from a previous call to
+ * bitstream_ensure_bits().
+ */
+static forceinline u32
+bitstream_pop_bits(struct input_bitstream *is, u32 num_bits)
+{
+       u32 bits = bitstream_peek_bits(is, num_bits);
+
+       bitstream_remove_bits(is, num_bits);
+       return bits;
+}
+
+/* Read and return the next @num_bits bits from the bitstream.  */
+static forceinline u32
+bitstream_read_bits(struct input_bitstream *is, u32 num_bits)
+{
+       bitstream_ensure_bits(is, num_bits);
+       return bitstream_pop_bits(is, num_bits);
+}
+
+/* Read and return the next literal byte embedded in the bitstream.  */
+static forceinline u8
+bitstream_read_byte(struct input_bitstream *is)
+{
+       if (unlikely(is->end == is->next))
+               return 0;
+       return *is->next++;
+}
+
+/* Read and return the next 16-bit integer embedded in the bitstream.  */
+static forceinline u16
+bitstream_read_u16(struct input_bitstream *is)
+{
+       u16 v;
+
+       if (unlikely(is->end - is->next < 2))
+               return 0;
+       v = get_unaligned_le16(is->next);
+       is->next += 2;
+       return v;
+}
+
+/* Read and return the next 32-bit integer embedded in the bitstream.  */
+static forceinline u32
+bitstream_read_u32(struct input_bitstream *is)
+{
+       u32 v;
+
+       if (unlikely(is->end - is->next < 4))
+               return 0;
+       v = get_unaligned_le32(is->next);
+       is->next += 4;
+       return v;
+}
+
+/* Read into @dst_buffer an array of literal bytes embedded in the bitstream.
+ * Return 0 if there were enough bytes remaining in the input, otherwise -1.
+ */
+static forceinline int
+bitstream_read_bytes(struct input_bitstream *is, void *dst_buffer, size_t 
count)
+{
+       if (unlikely(is->end - is->next < count))
+               return -1;
+       memcpy(dst_buffer, is->next, count);
+       is->next += count;
+       return 0;
+}
+
+/* Align the input bitstream on a coding-unit boundary.  */
+static forceinline void
+bitstream_align(struct input_bitstream *is)
+{
+       is->bitsleft = 0;
+       is->bitbuf = 0;
+}
+
+/******************************************************************************/
+/*                             Huffman decoding                               
*/
+/*----------------------------------------------------------------------------*/
+
+/*
+ * Required alignment for the Huffman decode tables.  We require this alignment
+ * so that we can fill the entries with vector or word instructions and not 
have
+ * to deal with misaligned buffers.
+ */
+#define DECODE_TABLE_ALIGNMENT 16
+
+/*
+ * Each decode table entry is 16 bits divided into two fields: 'symbol' (high 
12
+ * bits) and 'length' (low 4 bits).  The precise meaning of these fields 
depends
+ * on the type of entry:
+ *
+ * Root table entries which are *not* subtable pointers:
+ *     symbol: symbol to decode
+ *     length: codeword length in bits
+ *
+ * Root table entries which are subtable pointers:
+ *     symbol: index of start of subtable
+ *     length: number of bits with which the subtable is indexed
+ *
+ * Subtable entries:
+ *     symbol: symbol to decode
+ *     length: codeword length in bits, minus the number of bits with which the
+ *             root table is indexed
+ */
+#define DECODE_TABLE_SYMBOL_SHIFT  4
+#define DECODE_TABLE_MAX_SYMBOL           ((1 << (16 - 
DECODE_TABLE_SYMBOL_SHIFT)) - 1)
+#define DECODE_TABLE_MAX_LENGTH    ((1 << DECODE_TABLE_SYMBOL_SHIFT) - 1)
+#define DECODE_TABLE_LENGTH_MASK   DECODE_TABLE_MAX_LENGTH
+#define MAKE_DECODE_TABLE_ENTRY(symbol, length) \
+       (((symbol) << DECODE_TABLE_SYMBOL_SHIFT) | (length))
+
+/*
+ * Read and return the next Huffman-encoded symbol from the given bitstream
+ * using the given decode table.
+ *
+ * If the input data is exhausted, then the Huffman symbol will be decoded as 
if
+ * the missing bits were all zeroes.
+ *
+ * XXX: This is mostly duplicated in lzms_decode_huffman_symbol() in
+ * lzms_decompress.c; keep them in sync!
+ */
+static forceinline u32
+read_huffsym(struct input_bitstream *is, const u16 decode_table[],
+            u32 table_bits, u32 max_codeword_len)
+{
+       u32 entry;
+       u32 symbol;
+       u32 length;
+
+       /* Preload the bitbuffer with 'max_codeword_len' bits so that we're
+        * guaranteed to be able to fully decode a codeword.
+        */
+       bitstream_ensure_bits(is, max_codeword_len);
+
+       /* Index the root table by the next 'table_bits' bits of input. */
+       entry = decode_table[bitstream_peek_bits(is, table_bits)];
+
+       /* Extract the "symbol" and "length" from the entry. */
+       symbol = entry >> DECODE_TABLE_SYMBOL_SHIFT;
+       length = entry & DECODE_TABLE_LENGTH_MASK;
+
+       /* If the root table is indexed by the full 'max_codeword_len' bits,
+        * then there cannot be any subtables, and this will be known at compile
+        * time.  Otherwise, we must check whether the decoded symbol is really
+        * a subtable pointer.  If so, we must discard the bits with which the
+        * root table was indexed, then index the subtable by the next 'length'
+        * bits of input to get the real entry.
+        */
+       if (max_codeword_len > table_bits &&
+           entry >= (1U << (table_bits + DECODE_TABLE_SYMBOL_SHIFT))) {
+               /* Subtable required */
+               bitstream_remove_bits(is, table_bits);
+               entry = decode_table[symbol + bitstream_peek_bits(is, length)];
+               symbol = entry >> DECODE_TABLE_SYMBOL_SHIFT;
+               length = entry & DECODE_TABLE_LENGTH_MASK;
+       }
+
+       /* Discard the bits (or the remaining bits, if a subtable was required)
+        * of the codeword.
+        */
+       bitstream_remove_bits(is, length);
+
+       /* Return the decoded symbol. */
+       return symbol;
+}
+
+/*
+ * The DECODE_TABLE_ENOUGH() macro evaluates to the maximum number of decode
+ * table entries, including all subtable entries, that may be required for
+ * decoding a given Huffman code.  This depends on three parameters:
+ *
+ *     num_syms: the maximum number of symbols in the code
+ *     table_bits: the number of bits with which the root table will be indexed
+ *     max_codeword_len: the maximum allowed codeword length in the code
+ *
+ * Given these parameters, the utility program 'enough' from zlib, when passed
+ * the three arguments 'num_syms', 'table_bits', and 'max_codeword_len', will
+ * compute the maximum number of entries required.  This has already been done
+ * for the combinations we need and incorporated into the macro below so that
+ * the mapping can be done at compilation time.  If an unknown combination is
+ * used, then a compilation error will result.  To fix this, use 'enough' to
+ * find the missing value and add it below.  If that still doesn't fix the
+ * compilation error, then most likely a constraint would be violated by the
+ * requested parameters, so they cannot be used, at least without other changes
+ * to the decode table --- see DECODE_TABLE_SIZE().
+ */
+#define DECODE_TABLE_ENOUGH(num_syms, table_bits, max_codeword_len) ( \
+       ((num_syms) == 8 && (table_bits) == 7 && (max_codeword_len) == 15) ? 
128 : \
+       ((num_syms) == 8 && (table_bits) == 5 && (max_codeword_len) == 7) ? 36 
: \
+       ((num_syms) == 8 && (table_bits) == 6 && (max_codeword_len) == 7) ? 66 
: \
+       ((num_syms) == 8 && (table_bits) == 7 && (max_codeword_len) == 7) ? 128 
: \
+       ((num_syms) == 20 && (table_bits) == 5 && (max_codeword_len) == 15) ? 
1062 : \
+       ((num_syms) == 20 && (table_bits) == 6 && (max_codeword_len) == 15) ? 
582 : \
+       ((num_syms) == 20 && (table_bits) == 7 && (max_codeword_len) == 15) ? 
390 : \
+       ((num_syms) == 54 && (table_bits) == 9 && (max_codeword_len) == 15) ? 
618 : \
+       ((num_syms) == 54 && (table_bits) == 10 && (max_codeword_len) == 15) ? 
1098 : \
+       ((num_syms) == 249 && (table_bits) == 9 && (max_codeword_len) == 16) ? 
878 : \
+       ((num_syms) == 249 && (table_bits) == 10 && (max_codeword_len) == 16) ? 
1326 : \
+       ((num_syms) == 249 && (table_bits) == 11 && (max_codeword_len) == 16) ? 
2318 : \
+       ((num_syms) == 256 && (table_bits) == 9 && (max_codeword_len) == 15) ? 
822 : \
+       ((num_syms) == 256 && (table_bits) == 10 && (max_codeword_len) == 15) ? 
1302 : \
+       ((num_syms) == 256 && (table_bits) == 11 && (max_codeword_len) == 15) ? 
2310 : \
+       ((num_syms) == 512 && (table_bits) == 10 && (max_codeword_len) == 15) ? 
1558 : \
+       ((num_syms) == 512 && (table_bits) == 11 && (max_codeword_len) == 15) ? 
2566 : \
+       ((num_syms) == 512 && (table_bits) == 12 && (max_codeword_len) == 15) ? 
4606 : \
+       ((num_syms) == 656 && (table_bits) == 10 && (max_codeword_len) == 16) ? 
1734 : \
+       ((num_syms) == 656 && (table_bits) == 11 && (max_codeword_len) == 16) ? 
2726 : \
+       ((num_syms) == 656 && (table_bits) == 12 && (max_codeword_len) == 16) ? 
4758 : \
+       ((num_syms) == 799 && (table_bits) == 9 && (max_codeword_len) == 15) ? 
1366 : \
+       ((num_syms) == 799 && (table_bits) == 10 && (max_codeword_len) == 15) ? 
1846 : \
+       ((num_syms) == 799 && (table_bits) == 11 && (max_codeword_len) == 15) ? 
2854 : \
+       -1)
+
+/* Wrapper around DECODE_TABLE_ENOUGH() that does additional compile-time
+ * validation.
+ */
+#define DECODE_TABLE_SIZE(num_syms, table_bits, max_codeword_len) (    \
+                                                                       \
+       /* All values must be positive. */                              \
+       STATIC_ASSERT_ZERO((num_syms) > 0) +                            \
+       STATIC_ASSERT_ZERO((table_bits) > 0) +                          \
+       STATIC_ASSERT_ZERO((max_codeword_len) > 0) +                    \
+                                                                       \
+       /* There cannot be more symbols than possible codewords. */     \
+       STATIC_ASSERT_ZERO((num_syms) <= 1U << (max_codeword_len)) +    \
+                                                                       \
+       /* There is no reason for the root table to be indexed with */  \
+       /* more bits than the maximum codeword length. */               \
+       STATIC_ASSERT_ZERO((table_bits) <= (max_codeword_len)) +        \
+                                                                       \
+       /* The maximum symbol value must fit in the 'symbol' field. */  \
+       STATIC_ASSERT_ZERO((num_syms) - 1 <= DECODE_TABLE_MAX_SYMBOL) + \
+                                                                       \
+       /* The maximum codeword length in the root table must fit in */ \
+       /* the 'length' field. */                                       \
+       STATIC_ASSERT_ZERO((table_bits) <= DECODE_TABLE_MAX_LENGTH) +   \
+                                                                       \
+       /* The maximum codeword length in a subtable must fit in the */ \
+       /* 'length' field. */                                           \
+       STATIC_ASSERT_ZERO((max_codeword_len) - (table_bits) <=         \
+                               DECODE_TABLE_MAX_LENGTH) +              \
+                                                                       \
+       /* The minimum subtable index must be greater than the maximum */\
+       /* symbol value.  If this were not the case, then there would */\
+       /* be no way to tell whether a given root table entry is a */   \
+       /* "subtable pointer" or not.  (An alternate solution would */  \
+       /* be to reserve a flag bit specifically for this purpose.) */  \
+       STATIC_ASSERT_ZERO((1U << (table_bits)) > (num_syms) - 1) +     \
+                                                                       \
+       /* The needed 'enough' value must have been defined. */         \
+       STATIC_ASSERT_ZERO(DECODE_TABLE_ENOUGH(                         \
+                               (num_syms), (table_bits),               \
+                               (max_codeword_len)) > 0) +              \
+                                                                       \
+       /* The maximum subtable index must fit in the 'symbol' field. */\
+       STATIC_ASSERT_ZERO(DECODE_TABLE_ENOUGH(                         \
+                               (num_syms), (table_bits),               \
+                               (max_codeword_len)) - 1 <=              \
+                                       DECODE_TABLE_MAX_SYMBOL) +      \
+                                                                       \
+       /* Finally, make the macro evaluate to the needed maximum */    \
+       /* number of decode table entries. */                           \
+       DECODE_TABLE_ENOUGH((num_syms), (table_bits),                   \
+                           (max_codeword_len))                         \
+)
+
+
+/*
+ * Declare the decode table for a Huffman code, given several compile-time
+ * constants that describe the code.  See DECODE_TABLE_ENOUGH() for details.
+ *
+ * Decode tables must be aligned to a DECODE_TABLE_ALIGNMENT-byte boundary.
+ * This implies that if a decode table is nested inside a dynamically allocated
+ * structure, then the outer structure must be allocated on a
+ * DECODE_TABLE_ALIGNMENT-byte aligned boundary as well.
+ */
+#define DECODE_TABLE(name, num_syms, table_bits, max_codeword_len) \
+       u16 name[DECODE_TABLE_SIZE((num_syms), (table_bits), \
+                                  (max_codeword_len))] \
+               _aligned_attribute(DECODE_TABLE_ALIGNMENT)
+
+/*
+ * Declare the temporary "working_space" array needed for building the decode
+ * table for a Huffman code.
+ */
+#define DECODE_TABLE_WORKING_SPACE(name, num_syms, max_codeword_len)   \
+       u16 name[2 * ((max_codeword_len) + 1)  + (num_syms)]
+
+extern int
+make_huffman_decode_table(u16 decode_table[], u32 num_syms,
+                         u32 table_bits, const u8 lens[],
+                         u32 max_codeword_len, u16 working_space[]);
+
+/******************************************************************************/
+/*                             LZ match copying                               
*/
+/*----------------------------------------------------------------------------*/
+
+static forceinline void
+copy_word_unaligned(const void *src, void *dst)
+{
+       store_word_unaligned(load_word_unaligned(src), dst);
+}
+
+static forceinline size_t
+repeat_u16(u16 b)
+{
+       size_t v = b;
+
+       STATIC_ASSERT(WORDBITS == 32 || WORDBITS == 64);
+       v |= v << 16;
+       v |= v << ((WORDBITS == 64) ? 32 : 0);
+       return v;
+}
+
+static forceinline size_t
+repeat_byte(u8 b)
+{
+       return repeat_u16(((u16)b << 8) | b);
+}
+
+/*
+ * Copy an LZ77 match of 'length' bytes from the match source at 'out_next -
+ * offset' to the match destination at 'out_next'.  The source and destination
+ * may overlap.
+ *
+ * This handles validating the length and offset.  It is validated that the
+ * beginning of the match source is '>= out_begin' and that end of the match
+ * destination is '<= out_end'.  The return value is 0 if the match was valid
+ * (and was copied), otherwise -1.
+ *
+ * 'min_length' is a hint which specifies the minimum possible match length.
+ * This should be a compile-time constant.
+ */
+static forceinline int
+lz_copy(u32 length, u32 offset, u8 *out_begin, u8 *out_next, u8 *out_end,
+       u32 min_length)
+{
+       const u8 *src;
+       u8 *end;
+
+       /* Validate the offset. */
+       if (unlikely(offset > out_next - out_begin))
+               return -1;
+
+       /*
+        * Fast path: copy a match which is no longer than a few words, is not
+        * overlapped such that copying a word at a time would produce incorrect
+        * results, and is not too close to the end of the buffer.  Note that
+        * this might copy more than the length of the match, but that's okay in
+        * this scenario.
+        */
+       src = out_next - offset;
+       if (UNALIGNED_ACCESS_IS_FAST && length <= 3 * WORDBYTES &&
+           offset >= WORDBYTES && out_end - out_next >= 3 * WORDBYTES) {
+               copy_word_unaligned(src + WORDBYTES*0, out_next + WORDBYTES*0);
+               copy_word_unaligned(src + WORDBYTES*1, out_next + WORDBYTES*1);
+               copy_word_unaligned(src + WORDBYTES*2, out_next + WORDBYTES*2);
+               return 0;
+       }
+
+       /* Validate the length.  This isn't needed in the fast path above, due
+        * to the additional conditions tested, but we do need it here.
+        */
+       if (unlikely(length > out_end - out_next))
+               return -1;
+       end = out_next + length;
+
+       /*
+        * Try to copy one word at a time.  On i386 and x86_64 this is faster
+        * than copying one byte at a time, unless the data is near-random and
+        * all the matches have very short lengths.  Note that since this
+        * requires unaligned memory accesses, it won't necessarily be faster on
+        * every architecture.
+        *
+        * Also note that we might copy more than the length of the match.  For
+        * example, if a word is 8 bytes and the match is of length 5, then
+        * we'll simply copy 8 bytes.  This is okay as long as we don't write
+        * beyond the end of the output buffer, hence the check for (out_end -
+        * end >= WORDBYTES - 1).
+        */
+       if (UNALIGNED_ACCESS_IS_FAST && likely(out_end - end >= WORDBYTES - 1)) 
{
+               if (offset >= WORDBYTES) {
+                       /* The source and destination words don't overlap. */
+                       do {
+                               copy_word_unaligned(src, out_next);
+                               src += WORDBYTES;
+                               out_next += WORDBYTES;
+                       } while (out_next < end);
+                       return 0;
+               } else if (offset == 1) {
+                       /* Offset 1 matches are equivalent to run-length
+                        * encoding of the previous byte.  This case is common
+                        * if the data contains many repeated bytes.
+                        */
+                       size_t v = repeat_byte(*(out_next - 1));
+
+                       do {
+                               store_word_unaligned(v, out_next);
+                               src += WORDBYTES;
+                               out_next += WORDBYTES;
+                       } while (out_next < end);
+                       return 0;
+               }
+               /*
+                * We don't bother with special cases for other 'offset <
+                * WORDBYTES', which are usually rarer than 'offset == 1'.
+                * Extra checks will just slow things down.  Actually, it's
+                * possible to handle all the 'offset < WORDBYTES' cases using
+                * the same code, but it still becomes more complicated doesn't
+                * seem any faster overall; it definitely slows down the more
+                * common 'offset == 1' case.
+                */
+       }
+
+       /* Fall back to a bytewise copy.  */
+       if (min_length >= 2)
+               *out_next++ = *src++;
+       if (min_length >= 3)
+               *out_next++ = *src++;
+       if (min_length >= 4)
+               *out_next++ = *src++;
+       do {
+               *out_next++ = *src++;
+       } while (out_next != end);
+       return 0;
+}
+
+#endif /* _DECOMPRESS_COMMON_H */
diff --git a/fs/ntfs3/lib/lzx_common.c b/fs/ntfs3/lib/lzx_common.c
new file mode 100644
index 000000000000..d89d0fac333c
--- /dev/null
+++ b/fs/ntfs3/lib/lzx_common.c
@@ -0,0 +1,204 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * lzx_common.c - Common code for LZX compression and decompression.
+ */
+
+/*
+ * Copyright (C) 2012-2016 Eric Biggers
+ *
+ * This program is free software: you can redistribute it and/or modify it 
under
+ * the terms of the GNU General Public License as published by the Free 
Software
+ * Foundation, either version 2 of the License, or (at your option) any later
+ * version.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "lzx_common.h"
+
+/* Mapping: offset slot => first match offset that uses that offset slot.
+ * The offset slots for repeat offsets map to "fake" offsets < 1.
+ */
+const s32 lzx_offset_slot_base[LZX_MAX_OFFSET_SLOTS + 1] = {
+       -2,      -1,      0,       1,       2,          /* 0  --- 4  */
+       4,       6,       10,      14,      22,         /* 5  --- 9  */
+       30,      46,      62,      94,      126,        /* 10 --- 14 */
+       190,     254,     382,     510,     766,        /* 15 --- 19 */
+       1022,    1534,    2046,    3070,    4094,       /* 20 --- 24 */
+       6142,    8190,    12286,   16382,   24574,      /* 25 --- 29 */
+       32766,   49150,   65534,   98302,   131070,     /* 30 --- 34 */
+       196606,  262142,  393214,  524286,  655358,     /* 35 --- 39 */
+       786430,  917502,  1048574, 1179646, 1310718,    /* 40 --- 44 */
+       1441790, 1572862, 1703934, 1835006, 1966078,    /* 45 --- 49 */
+       2097150                                         /* extra     */
+};
+
+/* Mapping: offset slot => how many extra bits must be read and added to the
+ * corresponding offset slot base to decode the match offset.
+ */
+const u8 lzx_extra_offset_bits[LZX_MAX_OFFSET_SLOTS] = {
+       0,      0,      0,      0,      1,
+       1,      2,      2,      3,      3,
+       4,      4,      5,      5,      6,
+       6,      7,      7,      8,      8,
+       9,      9,      10,     10,     11,
+       11,     12,     12,     13,     13,
+       14,     14,     15,     15,     16,
+       16,     17,     17,     17,     17,
+       17,     17,     17,     17,     17,
+       17,     17,     17,     17,     17,
+};
+
+
+/* Round the specified buffer size up to the next valid LZX window size, and
+ * return its order (log2).  Or, if the buffer size is 0 or greater than the
+ * largest valid LZX window size, return 0.
+ */
+u32
+lzx_get_window_order(size_t max_bufsize)
+{
+       if (max_bufsize == 0 || max_bufsize > LZX_MAX_WINDOW_SIZE)
+               return 0;
+
+       return max(ilog2_ceil(max_bufsize), LZX_MIN_WINDOW_ORDER);
+}
+
+/* Given a valid LZX window order, return the number of symbols that will exist
+ * in the main Huffman code.
+ */
+u32
+lzx_get_num_main_syms(u32 window_order)
+{
+       /* Note: one would expect that the maximum match offset would be
+        * 'window_size - LZX_MIN_MATCH_LEN', which would occur if the first two
+        * bytes were to match the last two bytes.  However, the format
+        * disallows this case.  This reduces the number of needed offset slots
+        * by 1.
+        */
+       u32 window_size = (u32)1 << window_order;
+       u32 max_offset = window_size - LZX_MIN_MATCH_LEN - 1;
+       u32 num_offset_slots = 30;
+
+       while (max_offset >= lzx_offset_slot_base[num_offset_slots])
+               num_offset_slots++;
+
+       return LZX_NUM_CHARS + (num_offset_slots * LZX_NUM_LEN_HEADERS);
+}
+
+static void
+do_translate_target(void *target, s32 input_pos)
+{
+       s32 abs_offset, rel_offset;
+
+       rel_offset = get_unaligned_le32(target);
+       if (rel_offset >= -input_pos && rel_offset < LZX_WIM_MAGIC_FILESIZE) {
+               if (rel_offset < LZX_WIM_MAGIC_FILESIZE - input_pos) {
+                       /* "good translation" */
+                       abs_offset = rel_offset + input_pos;
+               } else {
+                       /* "compensating translation" */
+                       abs_offset = rel_offset - LZX_WIM_MAGIC_FILESIZE;
+               }
+               put_unaligned_le32(abs_offset, target);
+       }
+}
+
+static void
+undo_translate_target(void *target, s32 input_pos)
+{
+       s32 abs_offset, rel_offset;
+
+       abs_offset = get_unaligned_le32(target);
+       if (abs_offset >= 0) {
+               if (abs_offset < LZX_WIM_MAGIC_FILESIZE) {
+                       /* "good translation" */
+                       rel_offset = abs_offset - input_pos;
+                       put_unaligned_le32(rel_offset, target);
+               }
+       } else {
+               if (abs_offset >= -input_pos) {
+                       /* "compensating translation" */
+                       rel_offset = abs_offset + LZX_WIM_MAGIC_FILESIZE;
+                       put_unaligned_le32(rel_offset, target);
+               }
+       }
+}
+
+/*
+ * Do or undo the 'E8' preprocessing used in LZX.  Before compression, the
+ * uncompressed data is preprocessed by changing the targets of x86 CALL
+ * instructions from relative offsets to absolute offsets.  After 
decompression,
+ * the translation is undone by changing the targets of x86 CALL instructions
+ * from absolute offsets to relative offsets.
+ *
+ * Note that despite its intent, E8 preprocessing can be done on any data even
+ * if it is not actually x86 machine code.  In fact, E8 preprocessing appears 
to
+ * always be used in LZX-compressed resources in WIM files; there is no bit to
+ * indicate whether it is used or not, unlike in the LZX compressed format as
+ * used in cabinet files, where a bit is reserved for that purpose.
+ *
+ * E8 preprocessing is disabled in the last 6 bytes of the uncompressed data,
+ * which really means the 5-byte call instruction cannot start in the last 10
+ * bytes of the uncompressed data.  This is one of the errors in the LZX
+ * documentation.
+ *
+ * E8 preprocessing does not appear to be disabled after the 32768th chunk of a
+ * WIM resource, which apparently is another difference from the LZX 
compression
+ * used in cabinet files.
+ *
+ * E8 processing is supposed to take the file size as a parameter, as it is 
used
+ * in calculating the translated jump targets. But in WIM files, this file size
+ * is always the same (LZX_WIM_MAGIC_FILESIZE == 12000000).
+ */
+static void
+lzx_e8_filter(u8 *data, u32 size, void (*process_target)(void *, s32))
+{
+       /*
+        * A worthwhile optimization is to push the end-of-buffer check into the
+        * relatively rare E8 case.  This is possible if we replace the last six
+        * bytes of data with E8 bytes; then we are guaranteed to hit an E8 byte
+        * before reaching end-of-buffer.  In addition, this scheme guarantees
+        * that no translation can begin following an E8 byte in the last 10
+        * bytes because a 4-byte offset containing E8 as its high byte is a
+        * large negative number that is not valid for translation.  That is
+        * exactly what we need.
+        */
+       u8 *tail;
+       u8 saved_bytes[6];
+       u8 *p;
+
+       if (size <= 10)
+               return;
+
+       tail = &data[size - 6];
+       memcpy(saved_bytes, tail, 6);
+       memset(tail, 0xE8, 6);
+       p = data;
+       for (;;) {
+               while (*p != 0xE8)
+                       p++;
+               if (p >= tail)
+                       break;
+               (*process_target)(p + 1, p - data);
+               p += 5;
+       }
+       memcpy(tail, saved_bytes, 6);
+}
+
+void
+lzx_preprocess(u8 *data, u32 size)
+{
+       lzx_e8_filter(data, size, do_translate_target);
+}
+
+void
+lzx_postprocess(u8 *data, u32 size)
+{
+       lzx_e8_filter(data, size, undo_translate_target);
+}
diff --git a/fs/ntfs3/lib/lzx_common.h b/fs/ntfs3/lib/lzx_common.h
new file mode 100644
index 000000000000..2c87a0c9b5b3
--- /dev/null
+++ b/fs/ntfs3/lib/lzx_common.h
@@ -0,0 +1,31 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+/*
+ * lzx_common.h
+ *
+ * Declarations shared between LZX compression and decompression.
+ */
+
+#ifndef _LZX_COMMON_H
+#define _LZX_COMMON_H
+
+#include "lzx_constants.h"
+#include "common_defs.h"
+
+extern const s32 lzx_offset_slot_base[LZX_MAX_OFFSET_SLOTS + 1];
+
+extern const u8 lzx_extra_offset_bits[LZX_MAX_OFFSET_SLOTS];
+
+extern u32
+lzx_get_window_order(size_t max_bufsize);
+
+extern u32
+lzx_get_num_main_syms(u32 window_order);
+
+extern void
+lzx_preprocess(u8 *data, u32 size);
+
+extern void
+lzx_postprocess(u8 *data, u32 size);
+
+#endif /* _LZX_COMMON_H */
diff --git a/fs/ntfs3/lib/lzx_constants.h b/fs/ntfs3/lib/lzx_constants.h
new file mode 100644
index 000000000000..1115ce8ce5b1
--- /dev/null
+++ b/fs/ntfs3/lib/lzx_constants.h
@@ -0,0 +1,113 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * lzx_constants.h
+ *
+ * Constants for the LZX compression format.
+ */
+
+#ifndef _LZX_CONSTANTS_H
+#define _LZX_CONSTANTS_H
+
+/* Number of literal byte values.  */
+#define LZX_NUM_CHARS  256
+
+/* The smallest and largest allowed match lengths.  */
+#define LZX_MIN_MATCH_LEN      2
+#define LZX_MAX_MATCH_LEN      257
+
+/* Number of distinct match lengths that can be represented.  */
+#define LZX_NUM_LENS           (LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1)
+
+/* Number of match lengths for which no length symbol is required.  */
+#define LZX_NUM_PRIMARY_LENS   7
+#define LZX_NUM_LEN_HEADERS    (LZX_NUM_PRIMARY_LENS + 1)
+
+/* Valid values of the 3-bit block type field.  */
+#define LZX_BLOCKTYPE_VERBATIM       1
+#define LZX_BLOCKTYPE_ALIGNED        2
+#define LZX_BLOCKTYPE_UNCOMPRESSED   3
+
+/* 'LZX_MIN_WINDOW_SIZE' and 'LZX_MAX_WINDOW_SIZE' are the minimum and maximum
+ * sizes of the sliding window.
+ */
+#define LZX_MIN_WINDOW_ORDER   15u
+#define LZX_MAX_WINDOW_ORDER   21
+#define LZX_MIN_WINDOW_SIZE    (1UL << LZX_MIN_WINDOW_ORDER)  /* 32768   */
+#define LZX_MAX_WINDOW_SIZE    (1UL << LZX_MAX_WINDOW_ORDER)  /* 2097152 */
+
+/* Maximum number of offset slots.  (The actual number of offset slots depends
+ * on the window size.)
+ */
+#define LZX_MAX_OFFSET_SLOTS   50
+
+/* Maximum number of symbols in the main code.  (The actual number of symbols 
in
+ * the main code depends on the window size.)
+ */
+#define LZX_MAINCODE_MAX_NUM_SYMBOLS   \
+       (LZX_NUM_CHARS + (LZX_MAX_OFFSET_SLOTS * LZX_NUM_LEN_HEADERS))
+
+/* Number of symbols in the length code.  */
+#define LZX_LENCODE_NUM_SYMBOLS                (LZX_NUM_LENS - 
LZX_NUM_PRIMARY_LENS)
+
+/* Number of symbols in the pre-code.  */
+#define LZX_PRECODE_NUM_SYMBOLS                20
+
+/* Number of bits in which each pre-code codeword length is represented.  */
+#define LZX_PRECODE_ELEMENT_SIZE       4
+
+/* Number of low-order bits of each match offset that are entropy-encoded in
+ * aligned offset blocks.
+ */
+#define LZX_NUM_ALIGNED_OFFSET_BITS    3
+
+/* Number of symbols in the aligned offset code.  */
+#define LZX_ALIGNEDCODE_NUM_SYMBOLS    (1 << LZX_NUM_ALIGNED_OFFSET_BITS)
+
+/* Mask for the match offset bits that are entropy-encoded in aligned offset
+ * blocks.
+ */
+#define LZX_ALIGNED_OFFSET_BITMASK     ((1 << LZX_NUM_ALIGNED_OFFSET_BITS) - 1)
+
+/* Number of bits in which each aligned offset codeword length is represented. 
 */
+#define LZX_ALIGNEDCODE_ELEMENT_SIZE   3
+
+/* The first offset slot which requires an aligned offset symbol in aligned
+ * offset blocks.
+ */
+#define LZX_MIN_ALIGNED_OFFSET_SLOT    8
+
+/* The offset slot base for LZX_MIN_ALIGNED_OFFSET_SLOT.  */
+#define LZX_MIN_ALIGNED_OFFSET         14
+
+/* The maximum number of extra offset bits in verbatim blocks.  (One would need
+ * to subtract LZX_NUM_ALIGNED_OFFSET_BITS to get the number of extra offset
+ * bits in *aligned* blocks.)
+ */
+#define LZX_MAX_NUM_EXTRA_BITS         17
+
+/* Maximum lengths (in bits) for length-limited Huffman code construction.  */
+#define LZX_MAX_MAIN_CODEWORD_LEN      16
+#define LZX_MAX_LEN_CODEWORD_LEN       16
+#define LZX_MAX_PRE_CODEWORD_LEN       ((1 << LZX_PRECODE_ELEMENT_SIZE) - 1)
+#define LZX_MAX_ALIGNED_CODEWORD_LEN   ((1 << LZX_ALIGNEDCODE_ELEMENT_SIZE) - 
1)
+
+/* For LZX-compressed blocks in WIM resources, this value is always used as the
+ * filesize parameter for the call instruction (0xe8 byte) preprocessing, even
+ * though the blocks themselves are not this size, and the size of the actual
+ * file resource in the WIM file is very likely to be something entirely
+ * different as well.
+ */
+#define LZX_WIM_MAGIC_FILESIZE 12000000
+
+/* Assumed LZX block size when the encoded block size begins with a 0 bit.
+ * This is probably WIM-specific.
+ */
+#define LZX_DEFAULT_BLOCK_SIZE 32768
+
+/* Number of offsets in the recent (or "repeat") offsets queue.  */
+#define LZX_NUM_RECENT_OFFSETS 3
+
+/* An offset of n bytes is actually encoded as (n + LZX_OFFSET_ADJUSTMENT).  */
+#define LZX_OFFSET_ADJUSTMENT  (LZX_NUM_RECENT_OFFSETS - 1)
+
+#endif /* _LZX_CONSTANTS_H */
diff --git a/fs/ntfs3/lib/lzx_decompress.c b/fs/ntfs3/lib/lzx_decompress.c
new file mode 100644
index 000000000000..d6897a394abe
--- /dev/null
+++ b/fs/ntfs3/lib/lzx_decompress.c
@@ -0,0 +1,553 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * lzx_decompress.c
+ *
+ * A decompressor for the LZX compression format, as used in WIM files.
+ */
+
+/*
+ * Copyright (C) 2012-2016 Eric Biggers
+ *
+ * This program is free software: you can redistribute it and/or modify it 
under
+ * the terms of the GNU General Public License as published by the Free 
Software
+ * Foundation, either version 2 of the License, or (at your option) any later
+ * version.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ * LZX is an LZ77 and Huffman-code based compression format that has many
+ * similarities to DEFLATE (the format used by zlib/gzip).  The compression
+ * ratio is as good or better than DEFLATE.  See lzx_compress.c for a format
+ * overview, and see https://en.wikipedia.org/wiki/LZX_(algorithm) for a
+ * historical overview.  Here I make some pragmatic notes.
+ *
+ * The old specification for LZX is the document "Microsoft LZX Data 
Compression
+ * Format" (1997).  It defines the LZX format as used in cabinet files.  
Allowed
+ * window sizes are 2^n where 15 <= n <= 21.  However, this document contains
+ * several errors, so don't read too much into it...
+ *
+ * The new specification for LZX is the document "[MS-PATCH]: LZX DELTA
+ * Compression and Decompression" (2014).  It defines the LZX format as used by
+ * Microsoft's binary patcher. It corrects several errors in the 1997 document
+ * and extends the format in several ways --- namely, optional reference data,
+ * up to 2^25 byte windows, and longer match lengths.
+ *
+ * WIM files use a more restricted form of LZX.  No LZX DELTA extensions are
+ * present, the window is not "sliding", E8 preprocessing is done
+ * unconditionally with a fixed file size, and the maximum window size is 
always
+ * 2^15 bytes (equal to the size of each "chunk" in a compressed WIM resource).
+ * This code is primarily intended to implement this form of LZX.  But although
+ * not compatible with WIMGAPI, this code also supports maximum window sizes up
+ * to 2^21 bytes.
+ *
+ * TODO: Add support for window sizes up to 2^25 bytes.
+ */
+
+#include "decompress_common.h"
+#include "lzx_common.h"
+
+/* These values are chosen for fast decompression.  */
+#define LZX_MAINCODE_TABLEBITS         11
+#define LZX_LENCODE_TABLEBITS          9
+#define LZX_PRECODE_TABLEBITS          6
+#define LZX_ALIGNEDCODE_TABLEBITS      7
+
+#define LZX_READ_LENS_MAX_OVERRUN 50
+
+struct lzx_decompressor {
+
+       DECODE_TABLE(maincode_decode_table, LZX_MAINCODE_MAX_NUM_SYMBOLS,
+                    LZX_MAINCODE_TABLEBITS, LZX_MAX_MAIN_CODEWORD_LEN);
+       u8 maincode_lens[LZX_MAINCODE_MAX_NUM_SYMBOLS + 
LZX_READ_LENS_MAX_OVERRUN];
+
+       DECODE_TABLE(lencode_decode_table, LZX_LENCODE_NUM_SYMBOLS,
+                    LZX_LENCODE_TABLEBITS, LZX_MAX_LEN_CODEWORD_LEN);
+       u8 lencode_lens[LZX_LENCODE_NUM_SYMBOLS + LZX_READ_LENS_MAX_OVERRUN];
+
+       union {
+               DECODE_TABLE(alignedcode_decode_table, 
LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                            LZX_ALIGNEDCODE_TABLEBITS, 
LZX_MAX_ALIGNED_CODEWORD_LEN);
+               u8 alignedcode_lens[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+       };
+
+       union {
+               DECODE_TABLE(precode_decode_table, LZX_PRECODE_NUM_SYMBOLS,
+                            LZX_PRECODE_TABLEBITS, LZX_MAX_PRE_CODEWORD_LEN);
+               u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
+               u8 extra_offset_bits[LZX_MAX_OFFSET_SLOTS];
+       };
+
+       union {
+               DECODE_TABLE_WORKING_SPACE(maincode_working_space,
+                                          LZX_MAINCODE_MAX_NUM_SYMBOLS,
+                                          LZX_MAX_MAIN_CODEWORD_LEN);
+               DECODE_TABLE_WORKING_SPACE(lencode_working_space,
+                                          LZX_LENCODE_NUM_SYMBOLS,
+                                          LZX_MAX_LEN_CODEWORD_LEN);
+               DECODE_TABLE_WORKING_SPACE(alignedcode_working_space,
+                                          LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                          LZX_MAX_ALIGNED_CODEWORD_LEN);
+               DECODE_TABLE_WORKING_SPACE(precode_working_space,
+                                          LZX_PRECODE_NUM_SYMBOLS,
+                                          LZX_MAX_PRE_CODEWORD_LEN);
+       };
+
+       u32 window_order;
+       u32 num_main_syms;
+
+       /* Like lzx_extra_offset_bits[], but does not include the entropy-coded
+        * bits of aligned offset blocks
+        */
+       u8 extra_offset_bits_minus_aligned[LZX_MAX_OFFSET_SLOTS];
+
+} _aligned_attribute(DECODE_TABLE_ALIGNMENT);
+
+/* Read a Huffman-encoded symbol using the precode. */
+static forceinline u32
+read_presym(const struct lzx_decompressor *d, struct input_bitstream *is)
+{
+       return read_huffsym(is, d->precode_decode_table,
+                           LZX_PRECODE_TABLEBITS, LZX_MAX_PRE_CODEWORD_LEN);
+}
+
+/* Read a Huffman-encoded symbol using the main code. */
+static forceinline u32
+read_mainsym(const struct lzx_decompressor *d, struct input_bitstream *is)
+{
+       return read_huffsym(is, d->maincode_decode_table,
+                           LZX_MAINCODE_TABLEBITS, LZX_MAX_MAIN_CODEWORD_LEN);
+}
+
+/* Read a Huffman-encoded symbol using the length code. */
+static forceinline u32
+read_lensym(const struct lzx_decompressor *d, struct input_bitstream *is)
+{
+       return read_huffsym(is, d->lencode_decode_table,
+                           LZX_LENCODE_TABLEBITS, LZX_MAX_LEN_CODEWORD_LEN);
+}
+
+/* Read a Huffman-encoded symbol using the aligned offset code. */
+static forceinline u32
+read_alignedsym(const struct lzx_decompressor *d, struct input_bitstream *is)
+{
+       return read_huffsym(is, d->alignedcode_decode_table,
+                           LZX_ALIGNEDCODE_TABLEBITS, 
LZX_MAX_ALIGNED_CODEWORD_LEN);
+}
+
+/*
+ * Read a precode from the compressed input bitstream, then use it to decode
+ * @num_lens codeword length values and write them to @lens.
+ */
+static int
+lzx_read_codeword_lens(struct lzx_decompressor *d, struct input_bitstream *is,
+                      u8 *lens, u32 num_lens)
+{
+       u8 *len_ptr = lens;
+       u8 *lens_end = lens + num_lens;
+       int i;
+
+       /* Read the lengths of the precode codewords.  These are stored
+        * explicitly.
+        */
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++) {
+               d->precode_lens[i] =
+                       bitstream_read_bits(is, LZX_PRECODE_ELEMENT_SIZE);
+       }
+
+       /* Build the decoding table for the precode. */
+       if (make_huffman_decode_table(d->precode_decode_table,
+                                     LZX_PRECODE_NUM_SYMBOLS,
+                                     LZX_PRECODE_TABLEBITS,
+                                     d->precode_lens,
+                                     LZX_MAX_PRE_CODEWORD_LEN,
+                                     d->precode_working_space))
+               return -1;
+
+       /* Decode the codeword lengths.  */
+       do {
+               u32 presym;
+               u8 len;
+
+               /* Read the next precode symbol.  */
+               presym = read_presym(d, is);
+               if (presym < 17) {
+                       /* Difference from old length  */
+                       len = *len_ptr - presym;
+                       if ((s8)len < 0)
+                               len += 17;
+                       *len_ptr++ = len;
+               } else {
+                       /* Special RLE values  */
+
+                       u32 run_len;
+
+                       if (presym == 17) {
+                               /* Run of 0's  */
+                               run_len = 4 + bitstream_read_bits(is, 4);
+                               len = 0;
+                       } else if (presym == 18) {
+                               /* Longer run of 0's  */
+                               run_len = 20 + bitstream_read_bits(is, 5);
+                               len = 0;
+                       } else {
+                               /* Run of identical lengths  */
+                               run_len = 4 + bitstream_read_bits(is, 1);
+                               presym = read_presym(d, is);
+                               if (unlikely(presym > 17))
+                                       return -1;
+                               len = *len_ptr - presym;
+                               if ((s8)len < 0)
+                                       len += 17;
+                       }
+
+                       do {
+                               *len_ptr++ = len;
+                       } while (--run_len);
+                       /*
+                        * The worst case overrun is when presym == 18,
+                        * run_len == 20 + 31, and only 1 length was remaining.
+                        * So LZX_READ_LENS_MAX_OVERRUN == 50.
+                        *
+                        * Overrun while reading the first half of maincode_lens
+                        * can corrupt the previous values in the second half.
+                        * This doesn't really matter because the resulting
+                        * lengths will still be in range, and data that
+                        * generates overruns is invalid anyway.
+                        */
+               }
+       } while (len_ptr < lens_end);
+
+       return 0;
+}
+
+/*
+ * Read the header of an LZX block.  For all block types, the block type and
+ * size is saved in *block_type_ret and *block_size_ret, respectively. For
+ * compressed blocks, the codeword lengths are also saved.  For uncompressed
+ * blocks, the recent offsets queue is also updated.
+ */
+static int
+lzx_read_block_header(struct lzx_decompressor *d, struct input_bitstream *is,
+                     u32 recent_offsets[], int *block_type_ret,
+                     u32 *block_size_ret)
+{
+       int block_type;
+       u32 block_size;
+       int i;
+
+       bitstream_ensure_bits(is, 4);
+
+       /* Read the block type. */
+       block_type = bitstream_pop_bits(is, 3);
+
+       /* Read the block size. */
+       if (bitstream_pop_bits(is, 1)) {
+               block_size = LZX_DEFAULT_BLOCK_SIZE;
+       } else {
+               block_size = bitstream_read_bits(is, 16);
+               if (d->window_order >= 16) {
+                       block_size <<= 8;
+                       block_size |= bitstream_read_bits(is, 8);
+               }
+       }
+
+       switch (block_type) {
+
+       case LZX_BLOCKTYPE_ALIGNED:
+
+               /* Read the aligned offset codeword lengths. */
+
+               for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+                       d->alignedcode_lens[i] =
+                               bitstream_read_bits(is,
+                                                   
LZX_ALIGNEDCODE_ELEMENT_SIZE);
+               }
+
+               /* Fall though, since the rest of the header for aligned offset
+                * blocks is the same as that for verbatim blocks.
+                */
+               fallthrough;
+
+       case LZX_BLOCKTYPE_VERBATIM:
+
+               /* Read the main codeword lengths, which are divided into two
+                * parts: literal symbols and match headers.
+                */
+               if (lzx_read_codeword_lens(d, is, d->maincode_lens,
+                                          LZX_NUM_CHARS))
+                       return -1;
+
+               if (lzx_read_codeword_lens(d, is, d->maincode_lens + 
LZX_NUM_CHARS,
+                                          d->num_main_syms - LZX_NUM_CHARS))
+                       return -1;
+
+
+               /* Read the length codeword lengths. */
+
+               if (lzx_read_codeword_lens(d, is, d->lencode_lens,
+                                          LZX_LENCODE_NUM_SYMBOLS))
+                       return -1;
+
+               break;
+
+       case LZX_BLOCKTYPE_UNCOMPRESSED:
+               /*
+                * The header of an uncompressed block contains new values for
+                * the recent offsets queue, starting on the next 16-bit
+                * boundary in the bitstream.  Careful: if the stream is
+                * *already* aligned, the correct thing to do is to throw away
+                * the next 16 bits (this is probably a mistake in the format).
+                */
+               bitstream_ensure_bits(is, 1);
+               bitstream_align(is);
+               recent_offsets[0] = bitstream_read_u32(is);
+               recent_offsets[1] = bitstream_read_u32(is);
+               recent_offsets[2] = bitstream_read_u32(is);
+
+               /* Offsets of 0 are invalid.  */
+               if (recent_offsets[0] == 0 || recent_offsets[1] == 0 ||
+                   recent_offsets[2] == 0)
+                       return -1;
+               break;
+
+       default:
+               /* Unrecognized block type.  */
+               return -1;
+       }
+
+       *block_type_ret = block_type;
+       *block_size_ret = block_size;
+       return 0;
+}
+
+/* Decompress a block of LZX-compressed data. */
+static int
+lzx_decompress_block(struct lzx_decompressor *d, struct input_bitstream *is,
+                    int block_type, u32 block_size,
+                    u8 * const out_begin, u8 *out_next, u32 recent_offsets[])
+{
+       u8 * const block_end = out_next + block_size;
+       u32 min_aligned_offset_slot;
+
+       /*
+        * Build the Huffman decode tables.  We always need to build the main
+        * and length decode tables.  For aligned blocks we additionally need to
+        * build the aligned offset decode table.
+        */
+
+       if (make_huffman_decode_table(d->maincode_decode_table,
+                                     d->num_main_syms,
+                                     LZX_MAINCODE_TABLEBITS,
+                                     d->maincode_lens,
+                                     LZX_MAX_MAIN_CODEWORD_LEN,
+                                     d->maincode_working_space))
+               return -1;
+
+       if (make_huffman_decode_table(d->lencode_decode_table,
+                                     LZX_LENCODE_NUM_SYMBOLS,
+                                     LZX_LENCODE_TABLEBITS,
+                                     d->lencode_lens,
+                                     LZX_MAX_LEN_CODEWORD_LEN,
+                                     d->lencode_working_space))
+               return -1;
+
+       if (block_type == LZX_BLOCKTYPE_ALIGNED) {
+               if (make_huffman_decode_table(d->alignedcode_decode_table,
+                                             LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                             LZX_ALIGNEDCODE_TABLEBITS,
+                                             d->alignedcode_lens,
+                                             LZX_MAX_ALIGNED_CODEWORD_LEN,
+                                             d->alignedcode_working_space))
+                       return -1;
+               min_aligned_offset_slot = LZX_MIN_ALIGNED_OFFSET_SLOT;
+               memcpy(d->extra_offset_bits, d->extra_offset_bits_minus_aligned,
+                      sizeof(lzx_extra_offset_bits));
+       } else {
+               min_aligned_offset_slot = LZX_MAX_OFFSET_SLOTS;
+               memcpy(d->extra_offset_bits, lzx_extra_offset_bits,
+                      sizeof(lzx_extra_offset_bits));
+       }
+
+       /* Decode the literals and matches. */
+
+       do {
+               u32 mainsym;
+               u32 length;
+               u32 offset;
+               u32 offset_slot;
+
+               mainsym = read_mainsym(d, is);
+               if (mainsym < LZX_NUM_CHARS) {
+                       /* Literal */
+                       *out_next++ = mainsym;
+                       continue;
+               }
+
+               /* Match */
+
+               /* Decode the length header and offset slot.  */
+               STATIC_ASSERT(LZX_NUM_CHARS % LZX_NUM_LEN_HEADERS == 0);
+               length = mainsym % LZX_NUM_LEN_HEADERS;
+               offset_slot = (mainsym - LZX_NUM_CHARS) / LZX_NUM_LEN_HEADERS;
+
+               /* If needed, read a length symbol to decode the full length. */
+               if (length == LZX_NUM_PRIMARY_LENS)
+                       length += read_lensym(d, is);
+               length += LZX_MIN_MATCH_LEN;
+
+               if (offset_slot < LZX_NUM_RECENT_OFFSETS) {
+                       /* Repeat offset  */
+
+                       /* Note: This isn't a real LRU queue, since using the R2
+                        * offset doesn't bump the R1 offset down to R2.
+                        */
+                       offset = recent_offsets[offset_slot];
+                       recent_offsets[offset_slot] = recent_offsets[0];
+               } else {
+                       /* Explicit offset  */
+                       offset = bitstream_read_bits(is, 
d->extra_offset_bits[offset_slot]);
+                       if (offset_slot >= min_aligned_offset_slot) {
+                               offset = (offset << 
LZX_NUM_ALIGNED_OFFSET_BITS) |
+                                        read_alignedsym(d, is);
+                       }
+                       offset += lzx_offset_slot_base[offset_slot];
+
+                       /* Update the match offset LRU queue.  */
+                       STATIC_ASSERT(LZX_NUM_RECENT_OFFSETS == 3);
+                       recent_offsets[2] = recent_offsets[1];
+                       recent_offsets[1] = recent_offsets[0];
+               }
+               recent_offsets[0] = offset;
+
+               /* Validate the match and copy it to the current position.  */
+               if (unlikely(lz_copy(length, offset, out_begin,
+                                    out_next, block_end, LZX_MIN_MATCH_LEN)))
+                       return -1;
+               out_next += length;
+       } while (out_next != block_end);
+
+       return 0;
+}
+
+int
+lzx_decompress(struct lzx_decompressor *__restrict d,
+              const void *__restrict compressed_data, size_t compressed_size,
+              void *__restrict uncompressed_data, size_t uncompressed_size)
+{
+       u8 * const out_begin = uncompressed_data;
+       u8 *out_next = out_begin;
+       u8 * const out_end = out_begin + uncompressed_size;
+       struct input_bitstream is;
+       u32 recent_offsets[LZX_NUM_RECENT_OFFSETS] = {1, 1, 1};
+       u32 may_have_e8_byte = 0;
+
+       STATIC_ASSERT(LZX_NUM_RECENT_OFFSETS == 3);
+
+       init_input_bitstream(&is, compressed_data, compressed_size);
+
+       /* Codeword lengths begin as all 0's for delta encoding purposes. */
+       memset(d->maincode_lens, 0, d->num_main_syms);
+       memset(d->lencode_lens, 0, LZX_LENCODE_NUM_SYMBOLS);
+
+       /* Decompress blocks until we have all the uncompressed data. */
+
+       while (out_next != out_end) {
+               int block_type;
+               u32 block_size;
+
+               if (lzx_read_block_header(d, &is, recent_offsets,
+                                         &block_type, &block_size))
+                       return -1;
+
+               if (block_size < 1 || block_size > out_end - out_next)
+                       return -1;
+
+               if (likely(block_type != LZX_BLOCKTYPE_UNCOMPRESSED)) {
+
+                       /* Compressed block */
+                       if (lzx_decompress_block(d, &is, block_type, block_size,
+                                                out_begin, out_next,
+                                                recent_offsets))
+                               return -1;
+
+                       /* If the first E8 byte was in this block, then it must
+                        * have been encoded as a literal using mainsym E8.
+                        */
+                       may_have_e8_byte |= d->maincode_lens[0xE8];
+               } else {
+
+                       /* Uncompressed block */
+                       if (bitstream_read_bytes(&is, out_next, block_size))
+                               return -1;
+
+                       /* Re-align the bitstream if needed. */
+                       if (block_size & 1)
+                               bitstream_read_byte(&is);
+
+                       /* There may have been an E8 byte in the block. */
+                       may_have_e8_byte = 1;
+               }
+               out_next += block_size;
+       }
+
+       /* Postprocess the data unless it cannot possibly contain E8 bytes. */
+       if (may_have_e8_byte)
+               lzx_postprocess(uncompressed_data, uncompressed_size);
+
+       return 0;
+}
+
+struct lzx_decompressor *
+lzx_allocate_decompressor(size_t max_block_size)
+{
+       u32 window_order;
+       struct lzx_decompressor *d;
+       u32 offset_slot;
+
+       /*
+        * ntfs uses lzx only as max_block_size == 0x8000
+        * this value certainly will not fail
+        * we can remove lzx_get_window_order + ilog2_ceil + bsrw
+        */
+       WARN_ON(max_block_size != 0x8000);
+
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
+               return ERR_PTR(-EINVAL);
+
+       d = aligned_malloc(sizeof(*d), DECODE_TABLE_ALIGNMENT);
+       if (!d)
+               return NULL;
+
+       d->window_order = window_order;
+       d->num_main_syms = lzx_get_num_main_syms(window_order);
+
+       /* Initialize 'd->extra_offset_bits_minus_aligned'. */
+       STATIC_ASSERT(sizeof(d->extra_offset_bits_minus_aligned) ==
+                     sizeof(lzx_extra_offset_bits));
+       STATIC_ASSERT(sizeof(d->extra_offset_bits) ==
+                     sizeof(lzx_extra_offset_bits));
+       memcpy(d->extra_offset_bits_minus_aligned, lzx_extra_offset_bits,
+              sizeof(lzx_extra_offset_bits));
+       for (offset_slot = LZX_MIN_ALIGNED_OFFSET_SLOT;
+            offset_slot < LZX_MAX_OFFSET_SLOTS; offset_slot++) {
+               d->extra_offset_bits_minus_aligned[offset_slot] -=
+                               LZX_NUM_ALIGNED_OFFSET_BITS;
+       }
+
+       return d;
+}
+
+void
+lzx_free_decompressor(struct lzx_decompressor *d)
+{
+       aligned_free(d);
+}
diff --git a/fs/ntfs3/lib/xpress_constants.h b/fs/ntfs3/lib/xpress_constants.h
new file mode 100644
index 000000000000..c96a03bf4554
--- /dev/null
+++ b/fs/ntfs3/lib/xpress_constants.h
@@ -0,0 +1,23 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * xpress_constants.h
+ *
+ * Constants for the XPRESS compression format.
+ */
+
+#ifndef _XPRESS_CONSTANTS_H
+#define _XPRESS_CONSTANTS_H
+
+#define XPRESS_NUM_CHARS       256
+#define XPRESS_NUM_SYMBOLS     512
+#define XPRESS_MAX_CODEWORD_LEN        15
+
+#define XPRESS_END_OF_DATA     256
+
+#define XPRESS_MIN_OFFSET      1
+#define XPRESS_MAX_OFFSET      65535
+
+#define XPRESS_MIN_MATCH_LEN   3
+#define XPRESS_MAX_MATCH_LEN   65538
+
+#endif /* _XPRESS_CONSTANTS_H */
diff --git a/fs/ntfs3/lib/xpress_decompress.c b/fs/ntfs3/lib/xpress_decompress.c
new file mode 100644
index 000000000000..af87a4a91852
--- /dev/null
+++ b/fs/ntfs3/lib/xpress_decompress.c
@@ -0,0 +1,165 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * xpress_decompress.c
+ *
+ * A decompressor for the XPRESS compression format (Huffman variant).
+ */
+
+/*
+ *
+ * Copyright (C) 2012-2016 Eric Biggers
+ *
+ * This program is free software: you can redistribute it and/or modify it 
under
+ * the terms of the GNU General Public License as published by the Free 
Software
+ * Foundation, either version 2 of the License, or (at your option) any later
+ * version.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+
+/*
+ * The XPRESS compression format is an LZ77 and Huffman-code based algorithm.
+ * That means it is fairly similar to LZX compression, but XPRESS is simpler, 
so
+ * it is a little faster to compress and decompress.
+ *
+ * The XPRESS compression format is mostly documented in a file called 
"[MS-XCA]
+ * Xpress Compression Algorithm".  In the MSDN library, it can currently be
+ * found under Open Specifications => Protocols => Windows Protocols => Windows
+ * Server Protocols => [MS-XCA] Xpress Compression Algorithm".  The format in
+ * WIMs is specifically the algorithm labeled as the "LZ77+Huffman Algorithm"
+ * (there apparently are some other versions of XPRESS as well).
+ *
+ * If you are already familiar with the LZ77 algorithm and Huffman coding, the
+ * XPRESS format is fairly simple.  The compressed data begins with 256 bytes
+ * that contain 512 4-bit integers that are the lengths of the symbols in the
+ * Huffman code used for match/literal headers.  In contrast with more
+ * complicated formats such as DEFLATE and LZX, this is the only Huffman code
+ * that is used for the entirety of the XPRESS compressed data, and the 
codeword
+ * lengths are not encoded with a pretree.
+ *
+ * The rest of the compressed data is Huffman-encoded symbols. Values 0 through
+ * 255 represent the corresponding literal bytes.  Values 256 through 511
+ * represent matches and may require extra bits or bytes to be read to get the
+ * match offset and match length.
+ *
+ * The trickiest part is probably the way in which literal bytes for match
+ * lengths are interleaved in the bitstream.
+ *
+ * Also, a caveat--- according to Microsoft's documentation for XPRESS,
+ *
+ *     "Some implementation of the decompression algorithm expect an extra
+ *     symbol to mark the end of the data.  Specifically, some implementations
+ *     fail during decompression if the Huffman symbol 256 is not found after
+ *     the actual data."
+ *
+ * This is the case with Microsoft's implementation in WIMGAPI, for example.  
So
+ * although our implementation doesn't currently check for this extra symbol,
+ * compressors would be wise to add it.
+ */
+
+#include "decompress_common.h"
+#include "xpress_constants.h"
+
+/* This value is chosen for fast decompression.  */
+#define XPRESS_TABLEBITS 11
+
+struct xpress_decompressor {
+       union {
+               DECODE_TABLE(decode_table, XPRESS_NUM_SYMBOLS,
+                            XPRESS_TABLEBITS, XPRESS_MAX_CODEWORD_LEN);
+               u8 lens[XPRESS_NUM_SYMBOLS];
+       };
+       DECODE_TABLE_WORKING_SPACE(working_space, XPRESS_NUM_SYMBOLS,
+                                  XPRESS_MAX_CODEWORD_LEN);
+} _aligned_attribute(DECODE_TABLE_ALIGNMENT);
+
+int
+xpress_decompress(struct xpress_decompressor *__restrict d,
+                 const void *__restrict compressed_data, size_t 
compressed_size,
+                 void *__restrict uncompressed_data, size_t uncompressed_size)
+{
+       const u8 * const in_begin = compressed_data;
+       u8 * const out_begin = uncompressed_data;
+       u8 *out_next = out_begin;
+       u8 * const out_end = out_begin + uncompressed_size;
+       struct input_bitstream is;
+       int i;
+
+       /* Read the Huffman codeword lengths.  */
+       if (compressed_size < XPRESS_NUM_SYMBOLS / 2)
+               return -1;
+       for (i = 0; i < XPRESS_NUM_SYMBOLS / 2; i++) {
+               d->lens[2 * i + 0] = in_begin[i] & 0xf;
+               d->lens[2 * i + 1] = in_begin[i] >> 4;
+       }
+
+       /* Build a decoding table for the Huffman code.  */
+       if (make_huffman_decode_table(d->decode_table, XPRESS_NUM_SYMBOLS,
+                                     XPRESS_TABLEBITS, d->lens,
+                                     XPRESS_MAX_CODEWORD_LEN,
+                                     d->working_space))
+               return -1;
+
+       /* Decode the matches and literals.  */
+
+       init_input_bitstream(&is, in_begin + XPRESS_NUM_SYMBOLS / 2,
+                            compressed_size - XPRESS_NUM_SYMBOLS / 2);
+
+       while (out_next != out_end) {
+               u32 sym;
+               u32 log2_offset;
+               u32 length;
+               u32 offset;
+
+               sym = read_huffsym(&is, d->decode_table,
+                                  XPRESS_TABLEBITS, XPRESS_MAX_CODEWORD_LEN);
+               if (sym < XPRESS_NUM_CHARS) {
+                       /* Literal  */
+                       *out_next++ = sym;
+               } else {
+                       /* Match  */
+                       length = sym & 0xf;
+                       log2_offset = (sym >> 4) & 0xf;
+
+                       bitstream_ensure_bits(&is, 16);
+
+                       offset = ((u32)1 << log2_offset) |
+                                bitstream_pop_bits(&is, log2_offset);
+
+                       if (length == 0xf) {
+                               length += bitstream_read_byte(&is);
+                               if (length == 0xf + 0xff)
+                                       length = bitstream_read_u16(&is);
+                       }
+                       length += XPRESS_MIN_MATCH_LEN;
+
+                       if (unlikely(lz_copy(length, offset,
+                                            out_begin, out_next, out_end,
+                                            XPRESS_MIN_MATCH_LEN)))
+                               return -1;
+
+                       out_next += length;
+               }
+       }
+       return 0;
+}
+
+struct xpress_decompressor *
+xpress_allocate_decompressor(void)
+{
+       return aligned_malloc(sizeof(struct xpress_decompressor),
+                             DECODE_TABLE_ALIGNMENT);
+}
+
+void
+xpress_free_decompressor(struct xpress_decompressor *d)
+{
+       aligned_free(d);
+}
diff --git a/fs/ntfs3/lznt.c b/fs/ntfs3/lznt.c
new file mode 100644
index 000000000000..edba953b754a
--- /dev/null
+++ b/fs/ntfs3/lznt.c
@@ -0,0 +1,452 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *
+ * Copyright (C) 2019-2020 Paragon Software GmbH, All rights reserved.
+ *
+ */
+#include <linux/blkdev.h>
+#include <linux/buffer_head.h>
+#include <linux/fs.h>
+#include <linux/nls.h>
+
+#include "debug.h"
+#include "ntfs.h"
+#include "ntfs_fs.h"
+
+// clang-format off
+/* src buffer is zero */
+#define LZNT_ERROR_ALL_ZEROS   1
+#define LZNT_CHUNK_SIZE                0x1000
+// clang-format on
+
+struct lznt_hash {
+       const u8 *p1;
+       const u8 *p2;
+};
+
+struct lznt {
+       const u8 *unc;
+       const u8 *unc_end;
+       const u8 *best_match;
+       size_t max_len;
+       bool std;
+
+       struct lznt_hash hash[LZNT_CHUNK_SIZE];
+};
+
+static inline size_t get_match_len(const u8 *ptr, const u8 *end, const u8 
*prev,
+                                  size_t max_len)
+{
+       size_t len = 0;
+
+       while (ptr + len < end && ptr[len] == prev[len] && ++len < max_len)
+               ;
+       return len;
+}
+
+static size_t longest_match_std(const u8 *src, struct lznt *ctx)
+{
+       size_t hash_index;
+       size_t len1 = 0, len2 = 0;
+       const u8 **hash;
+
+       hash_index =
+               ((40543U * ((((src[0] << 4) ^ src[1]) << 4) ^ src[2])) >> 4) &
+               (LZNT_CHUNK_SIZE - 1);
+
+       hash = &(ctx->hash[hash_index].p1);
+
+       if (hash[0] >= ctx->unc && hash[0] < src && hash[0][0] == src[0] &&
+           hash[0][1] == src[1] && hash[0][2] == src[2]) {
+               len1 = 3;
+               if (ctx->max_len > 3)
+                       len1 += get_match_len(src + 3, ctx->unc_end,
+                                             hash[0] + 3, ctx->max_len - 3);
+       }
+
+       if (hash[1] >= ctx->unc && hash[1] < src && hash[1][0] == src[0] &&
+           hash[1][1] == src[1] && hash[1][2] == src[2]) {
+               len2 = 3;
+               if (ctx->max_len > 3)
+                       len2 += get_match_len(src + 3, ctx->unc_end,
+                                             hash[1] + 3, ctx->max_len - 3);
+       }
+
+       /* Compare two matches and select the best one */
+       if (len1 < len2) {
+               ctx->best_match = hash[1];
+               len1 = len2;
+       } else {
+               ctx->best_match = hash[0];
+       }
+
+       hash[1] = hash[0];
+       hash[0] = src;
+       return len1;
+}
+
+static size_t longest_match_best(const u8 *src, struct lznt *ctx)
+{
+       size_t max_len;
+       const u8 *ptr;
+
+       if (ctx->unc >= src || !ctx->max_len)
+               return 0;
+
+       max_len = 0;
+       for (ptr = ctx->unc; ptr < src; ++ptr) {
+               size_t len =
+                       get_match_len(src, ctx->unc_end, ptr, ctx->max_len);
+               if (len >= max_len) {
+                       max_len = len;
+                       ctx->best_match = ptr;
+               }
+       }
+
+       return max_len >= 3 ? max_len : 0;
+}
+
+static const size_t s_max_len[] = {
+       0x1002, 0x802, 0x402, 0x202, 0x102, 0x82, 0x42, 0x22, 0x12,
+};
+
+static const size_t s_max_off[] = {
+       0x10, 0x20, 0x40, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
+};
+
+static inline u16 make_pair(size_t offset, size_t len, size_t index)
+{
+       return ((offset - 1) << (12 - index)) |
+              ((len - 3) & (((1 << (12 - index)) - 1)));
+}
+
+static inline size_t parse_pair(u16 pair, size_t *offset, size_t index)
+{
+       *offset = 1 + (pair >> (12 - index));
+       return 3 + (pair & ((1 << (12 - index)) - 1));
+}
+
+/*
+ * compress_chunk
+ *
+ * returns one of the three values:
+ * 0 - ok, 'cmpr' contains 'cmpr_chunk_size' bytes of compressed data
+ * 1 - input buffer is full zero
+ * -2 - the compressed buffer is too small to hold the compressed data
+ */
+static inline int compress_chunk(size_t (*match)(const u8 *, struct lznt *),
+                                const u8 *unc, const u8 *unc_end, u8 *cmpr,
+                                u8 *cmpr_end, size_t *cmpr_chunk_size,
+                                struct lznt *ctx)
+{
+       size_t cnt = 0;
+       size_t idx = 0;
+       const u8 *up = unc;
+       u8 *cp = cmpr + 3;
+       u8 *cp2 = cmpr + 2;
+       u8 not_zero = 0;
+       /* Control byte of 8-bit values: ( 0 - means byte as is, 1 - short pair 
) */
+       u8 ohdr = 0;
+       u8 *last;
+       u16 t16;
+
+       if (unc + LZNT_CHUNK_SIZE < unc_end)
+               unc_end = unc + LZNT_CHUNK_SIZE;
+
+       last = min(cmpr + LZNT_CHUNK_SIZE + sizeof(short), cmpr_end);
+
+       ctx->unc = unc;
+       ctx->unc_end = unc_end;
+       ctx->max_len = s_max_len[0];
+
+       while (up < unc_end) {
+               size_t max_len;
+
+               while (unc + s_max_off[idx] < up)
+                       ctx->max_len = s_max_len[++idx];
+
+               // Find match
+               max_len = up + 3 <= unc_end ? (*match)(up, ctx) : 0;
+
+               if (!max_len) {
+                       if (cp >= last)
+                               goto NotCompressed;
+                       not_zero |= *cp++ = *up++;
+               } else if (cp + 1 >= last) {
+                       goto NotCompressed;
+               } else {
+                       t16 = make_pair(up - ctx->best_match, max_len, idx);
+                       *cp++ = t16;
+                       *cp++ = t16 >> 8;
+
+                       ohdr |= 1 << cnt;
+                       up += max_len;
+               }
+
+               cnt = (cnt + 1) & 7;
+               if (!cnt) {
+                       *cp2 = ohdr;
+                       ohdr = 0;
+                       cp2 = cp;
+                       cp += 1;
+               }
+       }
+
+       if (cp2 < last)
+               *cp2 = ohdr;
+       else
+               cp -= 1;
+
+       *cmpr_chunk_size = cp - cmpr;
+
+       t16 = (*cmpr_chunk_size - 3) | 0xB000;
+       cmpr[0] = t16;
+       cmpr[1] = t16 >> 8;
+
+       return not_zero ? 0 : LZNT_ERROR_ALL_ZEROS;
+
+NotCompressed:
+
+       if ((cmpr + LZNT_CHUNK_SIZE + sizeof(short)) > last)
+               return -2;
+
+       /*
+        * Copy non cmpr data
+        * 0x3FFF == ((LZNT_CHUNK_SIZE + 2 - 3) | 0x3000)
+        */
+       cmpr[0] = 0xff;
+       cmpr[1] = 0x3f;
+
+       memcpy(cmpr + sizeof(short), unc, LZNT_CHUNK_SIZE);
+       *cmpr_chunk_size = LZNT_CHUNK_SIZE + sizeof(short);
+
+       return 0;
+}
+
+static inline ssize_t decompress_chunk(u8 *unc, u8 *unc_end, const u8 *cmpr,
+                                      const u8 *cmpr_end)
+{
+       u8 *up = unc;
+       u8 ch = *cmpr++;
+       size_t bit = 0;
+       size_t index = 0;
+       u16 pair;
+       size_t offset, length;
+
+       /* Do decompression until pointers are inside range */
+       while (up < unc_end && cmpr < cmpr_end) {
+               /* Correct index */
+               while (unc + s_max_off[index] < up)
+                       index += 1;
+
+               /* Check the current flag for zero */
+               if (!(ch & (1 << bit))) {
+                       /* Just copy byte */
+                       *up++ = *cmpr++;
+                       goto next;
+               }
+
+               /* Check for boundary */
+               if (cmpr + 1 >= cmpr_end)
+                       return -EINVAL;
+
+               /* Read a short from little endian stream */
+               pair = cmpr[1];
+               pair <<= 8;
+               pair |= cmpr[0];
+
+               cmpr += 2;
+
+               /* Translate packed information into offset and length */
+               length = parse_pair(pair, &offset, index);
+
+               /* Check offset for boundary */
+               if (unc + offset > up)
+                       return -EINVAL;
+
+               /* Truncate the length if necessary */
+               if (up + length >= unc_end)
+                       length = unc_end - up;
+
+               /* Now we copy bytes. This is the heart of LZ algorithm. */
+               for (; length > 0; length--, up++)
+                       *up = *(up - offset);
+
+next:
+               /* Advance flag bit value */
+               bit = (bit + 1) & 7;
+
+               if (!bit) {
+                       if (cmpr >= cmpr_end)
+                               break;
+
+                       ch = *cmpr++;
+               }
+       }
+
+       /* return the size of uncompressed data */
+       return up - unc;
+}
+
+/*
+ * 0 - standard compression
+ * !0 - best compression, requires a lot of cpu
+ */
+struct lznt *get_lznt_ctx(int level)
+{
+       struct lznt *r = ntfs_alloc(
+               level ? offsetof(struct lznt, hash) : sizeof(struct lznt), 1);
+
+       if (r)
+               r->std = !level;
+       return r;
+}
+
+/*
+ * compress_lznt
+ *
+ * Compresses "unc" into "cmpr"
+ * +x - ok, 'cmpr' contains 'final_compressed_size' bytes of compressed data
+ * 0 - input buffer is full zero
+ */
+size_t compress_lznt(const void *unc, size_t unc_size, void *cmpr,
+                    size_t cmpr_size, struct lznt *ctx)
+{
+       int err;
+       size_t (*match)(const u8 *src, struct lznt *ctx);
+       u8 *p = cmpr;
+       u8 *end = p + cmpr_size;
+       const u8 *unc_chunk = unc;
+       const u8 *unc_end = unc_chunk + unc_size;
+       bool is_zero = true;
+
+       if (ctx->std) {
+               match = &longest_match_std;
+               memset(ctx->hash, 0, sizeof(ctx->hash));
+       } else {
+               match = &longest_match_best;
+       }
+
+       /* compression cycle */
+       for (; unc_chunk < unc_end; unc_chunk += LZNT_CHUNK_SIZE) {
+               cmpr_size = 0;
+               err = compress_chunk(match, unc_chunk, unc_end, p, end,
+                                    &cmpr_size, ctx);
+               if (err < 0)
+                       return unc_size;
+
+               if (is_zero && err != LZNT_ERROR_ALL_ZEROS)
+                       is_zero = false;
+
+               p += cmpr_size;
+       }
+
+       if (p <= end - 2)
+               p[0] = p[1] = 0;
+
+       return is_zero ? 0 : PtrOffset(cmpr, p);
+}
+
+/*
+ * decompress_lznt
+ *
+ * decompresses "cmpr" into "unc"
+ */
+ssize_t decompress_lznt(const void *cmpr, size_t cmpr_size, void *unc,
+                       size_t unc_size)
+{
+       const u8 *cmpr_chunk = cmpr;
+       const u8 *cmpr_end = cmpr_chunk + cmpr_size;
+       u8 *unc_chunk = unc;
+       u8 *unc_end = unc_chunk + unc_size;
+       u16 chunk_hdr;
+
+       if (cmpr_size < sizeof(short))
+               return -EINVAL;
+
+       /* read chunk header */
+       chunk_hdr = cmpr_chunk[1];
+       chunk_hdr <<= 8;
+       chunk_hdr |= cmpr_chunk[0];
+
+       /* loop through decompressing chunks */
+       for (;;) {
+               size_t chunk_size_saved;
+               size_t unc_use;
+               size_t cmpr_use = 3 + (chunk_hdr & (LZNT_CHUNK_SIZE - 1));
+
+               /* Check that the chunk actually fits the supplied buffer */
+               if (cmpr_chunk + cmpr_use > cmpr_end)
+                       return -EINVAL;
+
+               /* First make sure the chunk contains compressed data */
+               if (chunk_hdr & 0x8000) {
+                       /* Decompress a chunk and return if we get an error */
+                       ssize_t err =
+                               decompress_chunk(unc_chunk, unc_end,
+                                                cmpr_chunk + sizeof(chunk_hdr),
+                                                cmpr_chunk + cmpr_use);
+                       if (err < 0)
+                               return err;
+                       unc_use = err;
+               } else {
+                       /* This chunk does not contain compressed data */
+                       unc_use = unc_chunk + LZNT_CHUNK_SIZE > unc_end ?
+                                         unc_end - unc_chunk :
+                                         LZNT_CHUNK_SIZE;
+
+                       if (cmpr_chunk + sizeof(chunk_hdr) + unc_use >
+                           cmpr_end) {
+                               return -EINVAL;
+                       }
+
+                       memcpy(unc_chunk, cmpr_chunk + sizeof(chunk_hdr),
+                              unc_use);
+               }
+
+               /* Advance pointers */
+               cmpr_chunk += cmpr_use;
+               unc_chunk += unc_use;
+
+               /* Check for the end of unc buffer */
+               if (unc_chunk >= unc_end)
+                       break;
+
+               /* Proceed the next chunk */
+               if (cmpr_chunk > cmpr_end - 2)
+                       break;
+
+               chunk_size_saved = LZNT_CHUNK_SIZE;
+
+               /* read chunk header */
+               chunk_hdr = cmpr_chunk[1];
+               chunk_hdr <<= 8;
+               chunk_hdr |= cmpr_chunk[0];
+
+               if (!chunk_hdr)
+                       break;
+
+               /* Check the size of unc buffer */
+               if (unc_use < chunk_size_saved) {
+                       size_t t1 = chunk_size_saved - unc_use;
+                       u8 *t2 = unc_chunk + t1;
+
+                       /* 'Zero' memory */
+                       if (t2 >= unc_end)
+                               break;
+
+                       memset(unc_chunk, 0, t1);
+                       unc_chunk = t2;
+               }
+       }
+
+       /* Check compression boundary */
+       if (cmpr_chunk > cmpr_end)
+               return -EINVAL;
+
+       /*
+        * The unc size is just a difference between current
+        * pointer and original one
+        */
+       return PtrOffset(unc, unc_chunk);
+}
-- 
2.25.4

Reply via email to