On Thu, Jul 14, 2016 at 03:18:09PM +0200, Peter Zijlstra wrote: > On Wed, Jul 13, 2016 at 10:51:02PM +0200, Peter Zijlstra wrote: > > So, IIRC, the trade-off is a full memory barrier in read_lock and > > read_unlock() vs sync_sched() in write. > > > > Full memory barriers are expensive and while the combined cost might > > well exceed the cost of the sync_sched() it doesn't suffer the latency > > issues. > > > > Not sure if we can frob the two in a single codebase, but I can have a > > poke if Oleg or Paul doesn't beat me to it. > > OK, not too horrible if I say so myself :-) > > The below is a compile tested only first draft so far. I'll go give it > some runtime next.
Hmmm... How does this handle the following sequence of events for the case where we are not biased towards the reader? o The per-CPU rwsem is set up with RCU_NONE and readers_slow (as opposed to readers_block). The rcu_sync ->gp_state is GP_PENDING, which means that rcu_sync_is_idle() will always return true. o Task A on CPU 0 runs percpu_down_read() to completion, and remains within the critical section. CPU 0's ->refcount is therefore 1. o Task B on CPU 1 does percpu_down_write(), which write-acquires ->rw_sem, does rcu_sync_enter() (which is a no-op due to RCU_NONE), sets ->state to readers_block, and is just now going to wait for readers, which first invokes readers_active_check(), which starts summing the ->refcount for CPUs 0, 1, and 2, obtaining the value 1 so far. o Task C CPU 2 enters percpu_down_read(), disables preemption, increments CPU 2's ->refcount, sees rcu_sync_is_idle() return true (so skips __percpu_down_read()), enables preemption, and enters its critical section. o Task C migrates to CPU 3 and invokes percpu_up_read(), which disables preemption, sees rcu_sync_is_idle() return true, calls __this_cpu_dec() on CPU 3's ->refcount, and enables preemption. The value of CPU 3's ->refcount is thus (unsigned int)-1. o Task B on CPU 1 continues execution in readers_active_check(), with the full sum being zero. So it looks to me like we have Task A as a writer at the same time that Task A is a reader, which would not be so good. So what am I missing here? And a couple of checkpatch nits below. Yes, I had to apply the patch to figure out what it was doing. ;-) Thanx, Paul > --- > fs/super.c | 3 +- > include/linux/percpu-rwsem.h | 96 +++++++++++++++-- > include/linux/rcu_sync.h | 2 +- > kernel/locking/percpu-rwsem.c | 243 > +++++++++++++++++++++++++----------------- > kernel/rcu/sync.c | 15 +++ > 5 files changed, 249 insertions(+), 110 deletions(-) > > diff --git a/fs/super.c b/fs/super.c > index d78b9847e6cb..8ff18af7703f 100644 > --- a/fs/super.c > +++ b/fs/super.c > @@ -195,7 +195,8 @@ static struct super_block *alloc_super(struct > file_system_type *type, int flags) > for (i = 0; i < SB_FREEZE_LEVELS; i++) { > if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], > sb_writers_name[i], > - &type->s_writers_key[i])) > + &type->s_writers_key[i], > + PERCPU_RWSEM_READER)) > goto fail; > } > init_waitqueue_head(&s->s_writers.wait_unfrozen); > diff --git a/include/linux/percpu-rwsem.h b/include/linux/percpu-rwsem.h > index c2fa3ecb0dce..5e1c2b029e3a 100644 > --- a/include/linux/percpu-rwsem.h > +++ b/include/linux/percpu-rwsem.h > @@ -10,29 +10,107 @@ > > struct percpu_rw_semaphore { > struct rcu_sync rss; > - unsigned int __percpu *fast_read_ctr; > + unsigned int __percpu *refcount; > struct rw_semaphore rw_sem; > - atomic_t slow_read_ctr; > - wait_queue_head_t write_waitq; > + wait_queue_head_t writer; > + int state; > }; > > -extern void percpu_down_read(struct percpu_rw_semaphore *); > -extern int percpu_down_read_trylock(struct percpu_rw_semaphore *); > -extern void percpu_up_read(struct percpu_rw_semaphore *); > +extern void __percpu_down_read(struct percpu_rw_semaphore *); > +extern int __percpu_down_read_trylock(struct percpu_rw_semaphore *); > +extern void __percpu_up_read(struct percpu_rw_semaphore *); > + > +static inline void percpu_down_read(struct percpu_rw_semaphore *sem) > +{ > + might_sleep(); > + > + rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 0, _RET_IP_); > + > + preempt_disable(); > + /* > + * We are in an RCU-sched read-side critical section, so the writer > + * cannot both change sem->state from readers_fast and start checking > + * counters while we are here. So if we see !sem->state, we know that > + * the writer won't be checking until we're past the preempt_enable() > + * and that one the synchronize_sched() is done, the writer will see > + * anything we did within this RCU-sched read-size critical section. > + */ > + __this_cpu_inc(*sem->refcount); > + if (unlikely(!rcu_sync_is_idle(&sem->rss))) > + __percpu_down_read(sem); /* Unconditional memory barrier */ > + preempt_enable(); > + /* > + * The barrier() from preempt_enable() prevents the compiler from > + * bleeding the critical section out. > + */ > +} > + > +static inline int percpu_down_read_trylock(struct percpu_rw_semaphore *sem) > +{ > + int ret = 1; > + > + preempt_disable(); > + /* > + * Same as in percpu_down_read(). > + */ > + __this_cpu_inc(*sem->refcount); > + if (unlikely(!rcu_sync_is_idle(&sem->rss))) > + ret = __percpu_down_read_trylock(sem); > + preempt_enable(); > + /* > + * The barrier() from preempt_enable() prevents the compiler from > + * bleeding the critical section out. > + */ > + > + if (ret) > + rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 1, _RET_IP_); > + > + return ret; > +} > + > +static inline void percpu_up_read(struct percpu_rw_semaphore *sem) > +{ > + /* > + * The barrier() in preempt_disable() prevents the compiler from > + * bleeding the critical section out. > + */ > + preempt_disable(); > + /* > + * Same as in percpu_down_read(). > + */ > + if (likely(rcu_sync_is_idle(&sem->rss))) > + __this_cpu_dec(*sem->refcount); > + else > + __percpu_up_read(sem); /* Unconditional memory barrier */ > + preempt_enable(); > + > + rwsem_release(&sem->rw_sem.dep_map, 1, _RET_IP_); > +} > > extern void percpu_down_write(struct percpu_rw_semaphore *); > extern void percpu_up_write(struct percpu_rw_semaphore *); > > +enum percpu_rwsem_bias { PERCPU_RWSEM_READER, PERCPU_RWSEM_WRITER }; > + > extern int __percpu_init_rwsem(struct percpu_rw_semaphore *, > - const char *, struct lock_class_key *); > + const char *, struct lock_class_key *, > + enum percpu_rwsem_bias bias); > + > extern void percpu_free_rwsem(struct percpu_rw_semaphore *); > > -#define percpu_init_rwsem(brw) \ > +#define percpu_init_rwsem(sem) \ > ({ \ > static struct lock_class_key rwsem_key; \ > - __percpu_init_rwsem(brw, #brw, &rwsem_key); \ > + __percpu_init_rwsem(sem, #sem, &rwsem_key, \ > + PERCPU_RWSEM_READER); \ > }) > > +#define percpu_init_rwsem_writer(sem) \ > +({ \ > + static struct lock_class_key rwsem_key; \ > + __percpu_init_rwsem(sem, #sem, &rwsem_key,i \ > + PERCPU_RWSEM_WRITER); \ > +}) > > #define percpu_rwsem_is_held(sem) lockdep_is_held(&(sem)->rw_sem) > > diff --git a/include/linux/rcu_sync.h b/include/linux/rcu_sync.h > index a63a33e6196e..e556baaf785e 100644 > --- a/include/linux/rcu_sync.h > +++ b/include/linux/rcu_sync.h > @@ -26,7 +26,7 @@ > #include <linux/wait.h> > #include <linux/rcupdate.h> > > -enum rcu_sync_type { RCU_SYNC, RCU_SCHED_SYNC, RCU_BH_SYNC }; > +enum rcu_sync_type { RCU_SYNC, RCU_SCHED_SYNC, RCU_BH_SYNC, RCU_NONE }; > > /* Structure to mediate between updaters and fastpath-using readers. */ > struct rcu_sync { > diff --git a/kernel/locking/percpu-rwsem.c b/kernel/locking/percpu-rwsem.c > index bec0b647f9cc..be37c7732b54 100644 > --- a/kernel/locking/percpu-rwsem.c > +++ b/kernel/locking/percpu-rwsem.c > @@ -8,152 +8,197 @@ > #include <linux/sched.h> > #include <linux/errno.h> > > -int __percpu_init_rwsem(struct percpu_rw_semaphore *brw, > - const char *name, struct lock_class_key *rwsem_key) > +enum { readers_slow, readers_block }; > + > +int __percpu_init_rwsem(struct percpu_rw_semaphore *sem, > + const char *name, struct lock_class_key *rwsem_key, > + enum percpu_rwsem_bias bias) > { > - brw->fast_read_ctr = alloc_percpu(int); > - if (unlikely(!brw->fast_read_ctr)) > + sem->refcount = alloc_percpu(int); > + if (unlikely(!sem->refcount)) > return -ENOMEM; > > /* ->rw_sem represents the whole percpu_rw_semaphore for lockdep */ > - __init_rwsem(&brw->rw_sem, name, rwsem_key); > - rcu_sync_init(&brw->rss, RCU_SCHED_SYNC); > - atomic_set(&brw->slow_read_ctr, 0); > - init_waitqueue_head(&brw->write_waitq); > + rcu_sync_init(&sem->rss, bias == PERCPU_RWSEM_READER ? > + RCU_SCHED_SYNC : Whitespace complaint on prior two lines. > + RCU_NONE); > + __init_rwsem(&sem->rw_sem, name, rwsem_key); > + init_waitqueue_head(&sem->writer); > + sem->state = readers_slow; > return 0; > } > EXPORT_SYMBOL_GPL(__percpu_init_rwsem); > > -void percpu_free_rwsem(struct percpu_rw_semaphore *brw) > +void percpu_free_rwsem(struct percpu_rw_semaphore *sem) > { > /* > * XXX: temporary kludge. The error path in alloc_super() > * assumes that percpu_free_rwsem() is safe after kzalloc(). > */ > - if (!brw->fast_read_ctr) > + if (!sem->refcount) > return; > > - rcu_sync_dtor(&brw->rss); > - free_percpu(brw->fast_read_ctr); > - brw->fast_read_ctr = NULL; /* catch use after free bugs */ > + rcu_sync_dtor(&sem->rss); > + free_percpu(sem->refcount); > + sem->refcount = NULL; /* catch use after free bugs */ > } > EXPORT_SYMBOL_GPL(percpu_free_rwsem); > > -/* > - * This is the fast-path for down_read/up_read. If it succeeds we rely > - * on the barriers provided by rcu_sync_enter/exit; see the comments in > - * percpu_down_write() and percpu_up_write(). > - * > - * If this helper fails the callers rely on the normal rw_semaphore and > - * atomic_dec_and_test(), so in this case we have the necessary barriers. > - */ > -static bool update_fast_ctr(struct percpu_rw_semaphore *brw, unsigned int > val) > +void __percpu_down_read(struct percpu_rw_semaphore *sem) > { > - bool success; > + /* > + * Due to having preemption disabled the decrement happens on > + * the same CPU as the increment, avoiding the > + * increment-on-one-CPU-and-decrement-on-another problem. > + * > + * And yes, if the reader misses the writer's assignment of > + * readers_block to sem->state, then the writer is > + * guaranteed to see the reader's increment. Conversely, any > + * readers that increment their sem->refcount after the > + * writer looks are guaranteed to see the readers_block value, > + * which in turn means that they are guaranteed to immediately > + * decrement their sem->refcount, so that it doesn't matter > + * that the writer missed them. > + */ > > - preempt_disable(); > - success = rcu_sync_is_idle(&brw->rss); > - if (likely(success)) > - __this_cpu_add(*brw->fast_read_ctr, val); > - preempt_enable(); > + smp_mb(); /* A matches D */ > > - return success; > -} > + /* > + * If !readers_block the critical section starts here, matched by the > + * release in percpu_up_write(). > + */ > + if (likely(smp_load_acquire(&sem->state) != readers_block)) > + return; > > -/* > - * Like the normal down_read() this is not recursive, the writer can > - * come after the first percpu_down_read() and create the deadlock. > - * > - * Note: returns with lock_is_held(brw->rw_sem) == T for lockdep, > - * percpu_up_read() does rwsem_release(). This pairs with the usage > - * of ->rw_sem in percpu_down/up_write(). > - */ > -void percpu_down_read(struct percpu_rw_semaphore *brw) > -{ > - might_sleep(); > - rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 0, _RET_IP_); > + /* > + * Per the above comment; we still have preemption disabled and > + * will thus decrement on the same CPU as we incremented. > + */ > + __percpu_up_read(sem); > > - if (likely(update_fast_ctr(brw, +1))) > - return; > + /* > + * We either call schedule() in the wait, or we'll fall through > + * and reschedule on the preempt_enable() in percpu_down_read(). > + */ > + preempt_enable_no_resched(); > + > + /* > + * Avoid lockdep for the down/up_read() we already have them. > + */ > + __down_read(&sem->rw_sem); > + __this_cpu_inc(*sem->refcount); > + __up_read(&sem->rw_sem); > > - /* Avoid rwsem_acquire_read() and rwsem_release() */ > - __down_read(&brw->rw_sem); > - atomic_inc(&brw->slow_read_ctr); > - __up_read(&brw->rw_sem); > + preempt_disable(); > } > -EXPORT_SYMBOL_GPL(percpu_down_read); > +EXPORT_SYMBOL_GPL(__percpu_down_read); > > -int percpu_down_read_trylock(struct percpu_rw_semaphore *brw) > +int __percpu_down_read_trylock(struct percpu_rw_semaphore *sem) > { > - if (unlikely(!update_fast_ctr(brw, +1))) { > - if (!__down_read_trylock(&brw->rw_sem)) > - return 0; > - atomic_inc(&brw->slow_read_ctr); > - __up_read(&brw->rw_sem); > - } > - > - rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 1, _RET_IP_); > - return 1; > + smp_mb(); /* A matches D */ > + > + if (likely(smp_load_acquire(&sem->state) != readers_block)) > + return 1; > + > + __percpu_up_read(sem); > + return 0; > } > +EXPORT_SYMBOL_GPL(__percpu_down_read_trylock); > > -void percpu_up_read(struct percpu_rw_semaphore *brw) > +void __percpu_up_read(struct percpu_rw_semaphore *sem) > { > - rwsem_release(&brw->rw_sem.dep_map, 1, _RET_IP_); > - > - if (likely(update_fast_ctr(brw, -1))) > - return; > + smp_mb(); /* B matches C */ > + /* > + * In other words, if they see our decrement (presumably to aggregate > + * zero, as that is the only time it matters) they will also see our > + * critical section. > + */ > + __this_cpu_dec(*sem->refcount); > > - /* false-positive is possible but harmless */ > - if (atomic_dec_and_test(&brw->slow_read_ctr)) > - wake_up_all(&brw->write_waitq); > + /* Prod writer to recheck readers_active */ > + wake_up(&sem->writer); > } > -EXPORT_SYMBOL_GPL(percpu_up_read); > +EXPORT_SYMBOL_GPL(__percpu_up_read); > + > +#define per_cpu_sum(var) \ > +({ \ > + typeof(var) __sum = 0; \ > + int cpu; \ > + compiletime_assert_atomic_type(__sum); \ > + for_each_possible_cpu(cpu) \ > + __sum += per_cpu(var, cpu); \ > + __sum; \ > +}) > > -static int clear_fast_ctr(struct percpu_rw_semaphore *brw) > +/* > + * Return true if the modular sum of the sem->refcount per-CPU variable is > + * zero. If this sum is zero, then it is stable due to the fact that if any > + * newly arriving readers increment a given counter, they will immediately > + * decrement that same counter. > + */ > +static bool readers_active_check(struct percpu_rw_semaphore *sem) > { > - unsigned int sum = 0; > - int cpu; > + if (per_cpu_sum(*sem->refcount) != 0) > + return false; > + > + /* > + * If we observed the decrement; ensure we see the entire critical > + * section. > + */ > > - for_each_possible_cpu(cpu) { > - sum += per_cpu(*brw->fast_read_ctr, cpu); > - per_cpu(*brw->fast_read_ctr, cpu) = 0; > - } > + smp_mb(); /* C matches B */ > > - return sum; > + return true; > } > > -void percpu_down_write(struct percpu_rw_semaphore *brw) > +void percpu_down_write(struct percpu_rw_semaphore *sem) > { > + down_write(&sem->rw_sem); > + > + /* Notify readers to take the slow path. */ > + rcu_sync_enter(&sem->rss); > + > /* > - * Make rcu_sync_is_idle() == F and thus disable the fast-path in > - * percpu_down_read() and percpu_up_read(), and wait for gp pass. > - * > - * The latter synchronises us with the preceding readers which used > - * the fast-past, so we can not miss the result of __this_cpu_add() > - * or anything else inside their criticial sections. > + * Notify new readers to block; up until now, and thus throughout the > + * longish rcu_sync_enter() above, new readers could still come in. > */ > - rcu_sync_enter(&brw->rss); > + sem->state = readers_block; > > - /* exclude other writers, and block the new readers completely */ > - down_write(&brw->rw_sem); > + smp_mb(); /* D matches A */ > > - /* nobody can use fast_read_ctr, move its sum into slow_read_ctr */ > - atomic_add(clear_fast_ctr(brw), &brw->slow_read_ctr); > + /* > + * If they don't see our writer of readers_block to sem->state, > + * then we are guaranteed to see their sem->refcount increment, and > + * therefore will wait for them. > + */ > > - /* wait for all readers to complete their percpu_up_read() */ > - wait_event(brw->write_waitq, !atomic_read(&brw->slow_read_ctr)); > + /* Wait for all now active readers to complete. */ > + wait_event(sem->writer, readers_active_check(sem)); > } > -EXPORT_SYMBOL_GPL(percpu_down_write); > > -void percpu_up_write(struct percpu_rw_semaphore *brw) > +void percpu_up_write(struct percpu_rw_semaphore *sem) > { > - /* release the lock, but the readers can't use the fast-path */ > - up_write(&brw->rw_sem); > /* > - * Enable the fast-path in percpu_down_read() and percpu_up_read() > - * but only after another gp pass; this adds the necessary barrier > - * to ensure the reader can't miss the changes done by us. > + * Signal the writer is done, no fast path yet. > + * > + * One reason that we cannot just immediately flip to readers_fast is > + * that new readers might fail to see the results of this writer's > + * critical section. > + * > + * Therefore we force it through the slow path which guarantees an > + * acquire and thereby guarantees the critical section's consistency. > + */ > + smp_store_release(&sem->state, readers_slow); > + > + /* > + * Release the write lock, this will allow readers back in the game. > + */ > + up_write(&sem->rw_sem); > + > + /* > + * Once this completes (at least one RCU grace period hence) the reader > + * fast path will be available again. Safe to use outside the exclusive > + * write lock because its counting. > */ > - rcu_sync_exit(&brw->rss); > + rcu_sync_exit(&sem->rss); > } > -EXPORT_SYMBOL_GPL(percpu_up_write); > diff --git a/kernel/rcu/sync.c b/kernel/rcu/sync.c > index be922c9f3d37..48055bf629af 100644 > --- a/kernel/rcu/sync.c > +++ b/kernel/rcu/sync.c > @@ -55,6 +55,7 @@ static const struct { > .wait = rcu_barrier_bh, > __INIT_HELD(rcu_read_lock_bh_held) > }, > + [RCU_NONE] = { }, > }; > > enum { GP_IDLE = 0, GP_PENDING, GP_PASSED }; > @@ -65,6 +66,9 @@ enum { CB_IDLE = 0, CB_PENDING, CB_REPLAY }; > #ifdef CONFIG_PROVE_RCU > void rcu_sync_lockdep_assert(struct rcu_sync *rsp) > { > + if (rsp->gp_type == RCU_NONE) > + return; > + > RCU_LOCKDEP_WARN(!gp_ops[rsp->gp_type].held(), > "suspicious rcu_sync_is_idle() usage"); > } > @@ -80,6 +84,8 @@ void rcu_sync_init(struct rcu_sync *rsp, enum rcu_sync_type > type) > memset(rsp, 0, sizeof(*rsp)); > init_waitqueue_head(&rsp->gp_wait); > rsp->gp_type = type; > + if (rsp->gp_type == RCU_NONE) > + rsp->gp_state = GP_PENDING; /* anything !0 */ > } > > /** > @@ -101,6 +107,9 @@ void rcu_sync_enter(struct rcu_sync *rsp) > { > bool need_wait, need_sync; > > + if (rsp->gp_type == RCU_NONE) > + return; > + > spin_lock_irq(&rsp->rss_lock); > need_wait = rsp->gp_count++; > need_sync = rsp->gp_state == GP_IDLE; > @@ -188,6 +197,9 @@ static void rcu_sync_func(struct rcu_head *rcu) > */ > void rcu_sync_exit(struct rcu_sync *rsp) > { > + if (rsp->gp_type == RCU_NONE) > + return; > + > spin_lock_irq(&rsp->rss_lock); > if (!--rsp->gp_count) { > if (rsp->cb_state == CB_IDLE) { > @@ -208,6 +220,9 @@ void rcu_sync_dtor(struct rcu_sync *rsp) > { > int cb_state; > > + if (rsp->gp_type == RCU_NONE) > + return; > + > BUG_ON(rsp->gp_count); > > spin_lock_irq(&rsp->rss_lock); >