__compute_runnable_contrib() uses a loop to compute sum, whereas a table loopup can do it faster in a constant time.
The following python script can be used to generate the constants: print " #: yN_inv yN_sum" print "-----------------------" y = (0.5)**(1/32.0) x = 2**32 xx = 1024 for i in range(0, 32): if i == 0: x = x-1 xx = xx*y else: x = x*y xx = int(xx*y + 1024*y) print "%2d: %#x %8d" % (i, int(x), int(xx)) print " #: sum_N32" print "------------" xxx = xx for i in range(0, 11): if i == 0: xxx = xx else: xxx = xxx/2 + xx print "%2d: %8d" % (i, xxx) Signed-off-by: Yuyang Du <yuyang...@intel.com> Reviewed-by: Morten Rasmussen <morten.rasmus...@arm.com> --- kernel/sched/fair.c | 20 ++++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index b8cc1c3..6e0eec0 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -2603,6 +2603,15 @@ static const u32 runnable_avg_yN_sum[] = { }; /* + * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to + * lower integers. + */ +static const u32 __accumulated_sum_N32[] = { + 0, 23371, 35056, 40899, 43820, 45281, + 46011, 46376, 46559, 46650, 46696, 46719, +}; + +/* * Approximate: * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) */ @@ -2650,14 +2659,9 @@ static u32 __compute_runnable_contrib(u64 n) else if (unlikely(n >= LOAD_AVG_MAX_N)) return LOAD_AVG_MAX; - /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ - do { - contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ - contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; - - n -= LOAD_AVG_PERIOD; - } while (n > LOAD_AVG_PERIOD); - + /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ + contrib = __accumulated_sum_N32[n>>5]; /* =n/LOAD_AVG_PERIOD */ + n %= LOAD_AVG_PERIOD; contrib = decay_load(contrib, n); return contrib + runnable_avg_yN_sum[n]; } -- 2.1.4