On Wed, Nov 18, 2015 at 11:25:14AM +0000, Will Deacon wrote:
> On Tue, Nov 17, 2015 at 01:01:09PM -0800, Paul E. McKenney wrote:
> > On Tue, Nov 17, 2015 at 11:51:10AM +0000, Will Deacon wrote:
> > > On Mon, Nov 16, 2015 at 01:58:49PM -0800, Linus Torvalds wrote:
> > > > On Mon, Nov 16, 2015 at 8:24 AM, Will Deacon <will.dea...@arm.com> 
> > > > wrote:
> > > > >
> > > > > ... or we upgrade spin_unlock_wait to a LOCK operation, which might be
> > > > > slightly cheaper than spin_lock()+spin_unlock().
> > > > 
> > > > So traditionally the real concern has been the cacheline ping-pong
> > > > part of spin_unlock_wait(). I think adding a memory barrier (that
> > > > doesn't force any exclusive states, just ordering) to it is fine, but
> > > > I don't think we want to necessarily have it have to get the cacheline
> > > > into exclusive state.
> > > 
> > > The problem is, I don't think the memory-barrier buys you anything in
> > > the context of Boqun's example. In fact, he already had smp_mb() either
> > > side of the spin_unlock_wait() and its still broken on arm64 and ppc.
> > > 
> > > Paul is proposing adding a memory barrier after spin_lock() in the racing
> > > thread, but I personally think people will forget to add that.
> > 
> > A mechanical check would certainly make me feel better about it, so that
> > any lock that was passed to spin_unlock_wait() was required to have all
> > acquisitions followed by smp_mb__after_unlock_lock() or some such.
> > But I haven't yet given up on finding a better solution.
> 
> Right-o. I'll hack together the arm64 spin_unlock_wait fix, but hold off
> merging it for a few weeks in case we get struck by a sudden flash of
> inspiration.

For completeness, here's what I've currently got. I've failed to measure
any performance impact on my 8-core systems, but that's not surprising.

Will

--->8

>From da14adc1aef2f12b7a7def4d6b7dde254a91ebf1 Mon Sep 17 00:00:00 2001
From: Will Deacon <will.dea...@arm.com>
Date: Thu, 19 Nov 2015 17:48:31 +0000
Subject: [PATCH] arm64: spinlock: serialise spin_unlock_wait against
 concurrent lockers

Boqun Feng reported a rather nasty ordering issue with spin_unlock_wait
on architectures implementing spin_lock with LL/SC sequences and acquire
semantics:

 | CPU 1                   CPU 2                     CPU 3
 | ==================      ====================      ==============
 |                                                   spin_unlock(&lock);
 |                         spin_lock(&lock):
 |                           r1 = *lock; // r1 == 0;
 |                         o = READ_ONCE(object); // reordered here
 | object = NULL;
 | smp_mb();
 | spin_unlock_wait(&lock);
 |                           *lock = 1;
 | smp_mb();
 | o->dead = true;
 |                         if (o) // true
 |                           BUG_ON(o->dead); // true!!

The crux of the problem is that spin_unlock_wait(&lock) can return on
CPU 1 whilst CPU 2 is in the process of taking the lock. This can be
resolved by upgrading spin_unlock_wait to a LOCK operation, forcing it
to serialise against a concurrent locker and giving it acquire semantics
in the process (although it is not at all clear whether this is needed -
different callers seem to assume different things about the barrier
semantics and architectures are similarly disjoint in their
implementations of the macro).

This patch implements spin_unlock_wait using an LL/SC sequence with
acquire semantics on arm64. For v8.1 systems with the LSE atomics, the
exclusive writeback is omitted, since the spin_lock operation is
indivisible and no intermediate state can be observed.

Signed-off-by: Will Deacon <will.dea...@arm.com>
---
 arch/arm64/include/asm/spinlock.h | 24 ++++++++++++++++++++++--
 1 file changed, 22 insertions(+), 2 deletions(-)

diff --git a/arch/arm64/include/asm/spinlock.h 
b/arch/arm64/include/asm/spinlock.h
index c85e96d174a5..b531791a75ff 100644
--- a/arch/arm64/include/asm/spinlock.h
+++ b/arch/arm64/include/asm/spinlock.h
@@ -26,9 +26,29 @@
  * The memory barriers are implicit with the load-acquire and store-release
  * instructions.
  */
+static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
+{
+       unsigned int tmp;
+       arch_spinlock_t lockval;
 
-#define arch_spin_unlock_wait(lock) \
-       do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
+       asm volatile(
+"      sevl\n"
+"1:    wfe\n"
+"2:    ldaxr   %w0, %2\n"
+"      eor     %w1, %w0, %w0, ror #16\n"
+"      cbnz    %w1, 1b\n"
+       ARM64_LSE_ATOMIC_INSN(
+       /* LL/SC */
+"      stxr    %w1, %w0, %2\n"
+       /* Serialise against any concurrent lockers */
+"      cbnz    %w1, 2b\n",
+       /* LSE atomics */
+"      nop\n"
+"      nop\n")
+       : "=&r" (lockval), "=&r" (tmp), "+Q" (*lock)
+       :
+       : "memory");
+}
 
 #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
 
-- 
2.1.4

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majord...@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to