[ https://issues.apache.org/jira/browse/HIVE-17087?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Sahil Takiar updated HIVE-17087: -------------------------------- Attachment: HIVE-17087.2.patch Here is a brief summary of the issue: * When {{DynamicPartitionPruningOptimization}} is run, it runs before any join optimizations are done (including map-join conversion) * It's add a DPP subtree ({{SEL-GBY-SPARKPRUNINGSINK}} everywhere possible * After DPP is run, there are a few places where a DPP subtree can be removed: {{SparkRemoveDynamicPruningBySize}} and during {{SparkCompiler#runCycleAnalysisForPartitionPruning}} * This patch adds another place where DPP can be removed, inside {{SparkMapJoinOptimizer}} * There are certain scenarios where a DPP subtree needs to be removed during map-join conversion: ** Say there is a query that can take advantage of DPP, and the two tables being join are both partitioned ** If the join is converted to a map-join, then it only makes sense to keep on of the DPP subtrees; specifically the one that scans the big table and is used to prune partitions from the small table *** In a map-join the small table must be scanned completely first before the big table is read, so it doesn't make sense to have a DPP subtree on the big table * The example above can be extended to any scenario where DPP and map-joins are involved, if there is a DPP subtree on the big table that is meant to prune partitions from the small table, then the subtree should be completely removed * Hive-on-Tez does the same thing, the majority of the code is in this patch is copied from {{ConvertJoinMapJoin}}; the changes to {{ConvertJoinMapJoin}} were done in the original DPP patch for Hive-on-Tez * Some code was also copied from HIVE-10559, which fixes a NPE in this changes to the map-join conversion * Added a query to {{spark_dynamic_partition_pruning_2.q}} that was added to {{dynamic_partition_pruning_2.q}} in HIVE-10559 * I added a new file called {{spark_dynamic_partition_pruning_3.q}} that adds some queries that join two partitioned tables together, I couldn't find this style of query in the other dpp .q files > Remove unnecessary HoS DPP trees during map-join conversion > ----------------------------------------------------------- > > Key: HIVE-17087 > URL: https://issues.apache.org/jira/browse/HIVE-17087 > Project: Hive > Issue Type: Sub-task > Components: Spark > Reporter: Sahil Takiar > Assignee: Sahil Takiar > Attachments: HIVE-17087.1.patch, HIVE-17087.2.patch > > > Ran the following query in the {{TestSparkCliDriver}}: > {code:sql} > set hive.spark.dynamic.partition.pruning=true; > set hive.auto.convert.join=true; > create table partitioned_table1 (col int) partitioned by (part_col int); > create table partitioned_table2 (col int) partitioned by (part_col int); > create table regular_table (col int); > insert into table regular_table values (1); > alter table partitioned_table1 add partition (part_col = 1); > insert into table partitioned_table1 partition (part_col = 1) values (1), > (2), (3), (4), (5), (6), (7), (8), (9), (10); > alter table partitioned_table2 add partition (part_col = 1); > insert into table partitioned_table2 partition (part_col = 1) values (1), > (2), (3), (4), (5), (6), (7), (8), (9), (10); > explain select * from partitioned_table1, partitioned_table2 where > partitioned_table1.part_col = partitioned_table2.part_col; > {code} > and got the following explain plan: > {code} > STAGE DEPENDENCIES: > Stage-2 is a root stage > Stage-3 depends on stages: Stage-2 > Stage-1 depends on stages: Stage-3 > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-2 > Spark > #### A masked pattern was here #### > Vertices: > Map 3 > Map Operator Tree: > TableScan > alias: partitioned_table1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: col (type: int), part_col (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: _col1 (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Group By Operator > keys: _col0 (type: int) > mode: hash > outputColumnNames: _col0 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Spark Partition Pruning Sink Operator > partition key expr: part_col > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > target column name: part_col > target work: Map 2 > Stage: Stage-3 > Spark > #### A masked pattern was here #### > Vertices: > Map 2 > Map Operator Tree: > TableScan > alias: partitioned_table2 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: col (type: int), part_col (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Spark HashTable Sink Operator > keys: > 0 _col1 (type: int) > 1 _col1 (type: int) > Local Work: > Map Reduce Local Work > Stage: Stage-1 > Spark > #### A masked pattern was here #### > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: partitioned_table1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: col (type: int), part_col (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Map Join Operator > condition map: > Inner Join 0 to 1 > keys: > 0 _col1 (type: int) > 1 _col1 (type: int) > outputColumnNames: _col0, _col1, _col2, _col3 > input vertices: > 1 Map 2 > Statistics: Num rows: 11 Data size: 12 Basic stats: > COMPLETE Column stats: NONE > File Output Operator > compressed: false > Statistics: Num rows: 11 Data size: 12 Basic stats: > COMPLETE Column stats: NONE > table: > input format: > org.apache.hadoop.mapred.SequenceFileInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat > serde: > org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe > Local Work: > Map Reduce Local Work > Stage: Stage-0 > Fetch Operator > limit: -1 > Processor Tree: > ListSink > {code} > Stage-2 seems unnecessary, given that Stage-1 is going to do a full table > scan of {{partitioned_table1}} when running the map-join -- This message was sent by Atlassian JIRA (v6.4.14#64029)