[ https://issues.apache.org/jira/browse/HIVE-17087?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Sahil Takiar updated HIVE-17087: -------------------------------- Description: Ran the following query in the {{TestSparkCliDriver}}: {code:sql} set hive.spark.dynamic.partition.pruning=true; set hive.auto.convert.join=true; create table partitioned_table1 (col int) partitioned by (part_col int); create table partitioned_table2 (col int) partitioned by (part_col int); create table regular_table (col int); insert into table regular_table values (1); alter table partitioned_table1 add partition (part_col = 1); insert into table partitioned_table1 partition (part_col = 1) values (1), (2), (3), (4), (5), (6), (7), (8), (9), (10); alter table partitioned_table2 add partition (part_col = 1); insert into table partitioned_table2 partition (part_col = 1) values (1), (2), (3), (4), (5), (6), (7), (8), (9), (10); explain select * from partitioned_table1, partitioned_table2 where partitioned_table1.part_col = partitioned_table2.part_col; {code} and got the following explain plan: {code} STAGE DEPENDENCIES: Stage-2 is a root stage Stage-3 depends on stages: Stage-2 Stage-1 depends on stages: Stage-3 Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-2 Spark #### A masked pattern was here #### Vertices: Map 3 Map Operator Tree: TableScan alias: partitioned_table1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int), part_col (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col1 (type: int) outputColumnNames: _col0 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Spark Partition Pruning Sink Operator partition key expr: part_col Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE target column name: part_col target work: Map 2 Stage: Stage-3 Spark #### A masked pattern was here #### Vertices: Map 2 Map Operator Tree: TableScan alias: partitioned_table2 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int), part_col (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Spark HashTable Sink Operator keys: 0 _col1 (type: int) 1 _col1 (type: int) Local Work: Map Reduce Local Work Stage: Stage-1 Spark #### A masked pattern was here #### Vertices: Map 1 Map Operator Tree: TableScan alias: partitioned_table1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int), part_col (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 _col1 (type: int) 1 _col1 (type: int) outputColumnNames: _col0, _col1, _col2, _col3 input vertices: 1 Map 2 Statistics: Num rows: 11 Data size: 12 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 11 Data size: 12 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink {code} Stage-2 seems unnecessary, given that Stage-1 is going to do a full table scan of {{partitioned_table1}} when running the map-join was: Ran the following query in the {{TestSparkCliDriver}}: {code:sql} set hive.spark.dynamic.partition.pruning=true; set hive.auto.convert.join=true; create table partitioned_table1 (col int) partitioned by (part_col int); create table partitioned_table2 (col int) partitioned by (part_col int); create table regular_table (col int); insert into table regular_table values (1); alter table partitioned_table1 add partition (part_col = 1); insert into table partitioned_table1 partition (part_col = 1) values (1), (2), (3), (4), (5), (6), (7), (8), (9), (10); alter table partitioned_table2 add partition (part_col = 1); insert into table partitioned_table2 partition (part_col = 1) values (1), (2), (3), (4), (5), (6), (7), (8), (9), (10); explain select * from partitioned_table1 where partitioned_table1.part_col in (select regular_table.col from regular_table join partitioned_table2 on regular_table.col = partitioned_table2.part_col); {code} and got the following explain plan: {code} STAGE DEPENDENCIES: Stage-2 is a root stage Stage-4 depends on stages: Stage-2 Stage-5 depends on stages: Stage-4 Stage-3 depends on stages: Stage-5 Stage-1 depends on stages: Stage-3 Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-2 Spark #### A masked pattern was here #### Vertices: Map 4 Map Operator Tree: TableScan alias: partitioned_table1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int), part_col (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col1 (type: int) outputColumnNames: _col0 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Spark Partition Pruning Sink Operator partition key expr: part_col Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE target column name: part_col target work: Map 3 Stage: Stage-4 Spark #### A masked pattern was here #### Vertices: Map 2 Map Operator Tree: TableScan alias: regular_table Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: col is not null (type: boolean) Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int) outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Spark HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col0 (type: int) Select Operator expressions: _col0 (type: int) outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Spark Partition Pruning Sink Operator partition key expr: part_col Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE target column name: part_col target work: Map 3 Local Work: Map Reduce Local Work Stage: Stage-5 Spark #### A masked pattern was here #### Stage: Stage-3 Spark #### A masked pattern was here #### Vertices: Map 3 Map Operator Tree: TableScan alias: partitioned_table2 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: part_col (type: int) outputColumnNames: _col0 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0 input vertices: 0 Map 2 Statistics: Num rows: 11 Data size: 12 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 11 Data size: 12 Basic stats: COMPLETE Column stats: NONE Spark HashTable Sink Operator keys: 0 _col1 (type: int) 1 _col0 (type: int) Local Work: Map Reduce Local Work Stage: Stage-1 Spark #### A masked pattern was here #### Vertices: Map 1 Map Operator Tree: TableScan alias: partitioned_table1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int), part_col (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Left Semi Join 0 to 1 keys: 0 _col1 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col1 input vertices: 1 Map 3 Statistics: Num rows: 12 Data size: 13 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 12 Data size: 13 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink {code} I see a couple of weird things in the above explain plan: * I don't think there should be a partitioned_table1 scan -> Spark Partition Pruning Sink * I'm not sure what is happening with Stage-5 of the explain plan For reference, here is the explain plan for the equivalent query in Hive-on-Tez: {code} STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-1 Tez #### A masked pattern was here #### Edges: Map 1 <- Map 3 (BROADCAST_EDGE) Map 3 <- Map 2 (BROADCAST_EDGE) #### A masked pattern was here #### Vertices: Map 1 Map Operator Tree: TableScan alias: partitioned_table1 Statistics: Num rows: 10 Data size: 51 Basic stats: COMPLETE Column stats: PARTIAL Select Operator expressions: col (type: int), part_col (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 10 Data size: 40 Basic stats: COMPLETE Column stats: PARTIAL Map Join Operator condition map: Left Semi Join 0 to 1 keys: 0 _col1 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col1 input vertices: 1 Map 3 Statistics: Num rows: 12 Data size: 48 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 12 Data size: 48 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Execution mode: llap LLAP IO: no inputs Map 2 Map Operator Tree: TableScan alias: regular_table Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: col is not null (type: boolean) Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int) outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: int) sort order: + Map-reduce partition columns: _col0 (type: int) Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: int) outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Dynamic Partitioning Event Operator Target column: part_col (int) Target Input: partitioned_table2 Partition key expr: part_col Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Target Vertex: Map 3 Execution mode: llap LLAP IO: no inputs Map 3 Map Operator Tree: TableScan alias: partitioned_table2 Statistics: Num rows: 10 Data size: 51 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: part_col (type: int) outputColumnNames: _col0 Statistics: Num rows: 10 Data size: 40 Basic stats: COMPLETE Column stats: COMPLETE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0 input vertices: 0 Map 2 Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: int) sort order: + Map-reduce partition columns: _col0 (type: int) Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: int) outputColumnNames: _col0 Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONE Dynamic Partitioning Event Operator Target column: part_col (int) Target Input: partitioned_table1 Partition key expr: part_col Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONE Target Vertex: Map 1 Execution mode: llap LLAP IO: no inputs Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink {code} > Remove unnecessary HoS DPP trees during map-join conversion > ----------------------------------------------------------- > > Key: HIVE-17087 > URL: https://issues.apache.org/jira/browse/HIVE-17087 > Project: Hive > Issue Type: Sub-task > Components: Spark > Reporter: Sahil Takiar > Assignee: Sahil Takiar > Attachments: HIVE-17087.1.patch > > > Ran the following query in the {{TestSparkCliDriver}}: > {code:sql} > set hive.spark.dynamic.partition.pruning=true; > set hive.auto.convert.join=true; > create table partitioned_table1 (col int) partitioned by (part_col int); > create table partitioned_table2 (col int) partitioned by (part_col int); > create table regular_table (col int); > insert into table regular_table values (1); > alter table partitioned_table1 add partition (part_col = 1); > insert into table partitioned_table1 partition (part_col = 1) values (1), > (2), (3), (4), (5), (6), (7), (8), (9), (10); > alter table partitioned_table2 add partition (part_col = 1); > insert into table partitioned_table2 partition (part_col = 1) values (1), > (2), (3), (4), (5), (6), (7), (8), (9), (10); > explain select * from partitioned_table1, partitioned_table2 where > partitioned_table1.part_col = partitioned_table2.part_col; > {code} > and got the following explain plan: > {code} > STAGE DEPENDENCIES: > Stage-2 is a root stage > Stage-3 depends on stages: Stage-2 > Stage-1 depends on stages: Stage-3 > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-2 > Spark > #### A masked pattern was here #### > Vertices: > Map 3 > Map Operator Tree: > TableScan > alias: partitioned_table1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: col (type: int), part_col (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: _col1 (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Group By Operator > keys: _col0 (type: int) > mode: hash > outputColumnNames: _col0 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Spark Partition Pruning Sink Operator > partition key expr: part_col > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > target column name: part_col > target work: Map 2 > Stage: Stage-3 > Spark > #### A masked pattern was here #### > Vertices: > Map 2 > Map Operator Tree: > TableScan > alias: partitioned_table2 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: col (type: int), part_col (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Spark HashTable Sink Operator > keys: > 0 _col1 (type: int) > 1 _col1 (type: int) > Local Work: > Map Reduce Local Work > Stage: Stage-1 > Spark > #### A masked pattern was here #### > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: partitioned_table1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: col (type: int), part_col (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 10 Data size: 11 Basic stats: > COMPLETE Column stats: NONE > Map Join Operator > condition map: > Inner Join 0 to 1 > keys: > 0 _col1 (type: int) > 1 _col1 (type: int) > outputColumnNames: _col0, _col1, _col2, _col3 > input vertices: > 1 Map 2 > Statistics: Num rows: 11 Data size: 12 Basic stats: > COMPLETE Column stats: NONE > File Output Operator > compressed: false > Statistics: Num rows: 11 Data size: 12 Basic stats: > COMPLETE Column stats: NONE > table: > input format: > org.apache.hadoop.mapred.SequenceFileInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat > serde: > org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe > Local Work: > Map Reduce Local Work > Stage: Stage-0 > Fetch Operator > limit: -1 > Processor Tree: > ListSink > {code} > Stage-2 seems unnecessary, given that Stage-1 is going to do a full table > scan of {{partitioned_table1}} when running the map-join -- This message was sent by Atlassian JIRA (v6.4.14#64029)