[ https://issues.apache.org/jira/browse/FLINK-5803?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15882979#comment-15882979 ]
ASF GitHub Bot commented on FLINK-5803: --------------------------------------- Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/3397#discussion_r102949757 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala --- @@ -0,0 +1,216 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.flink.table.plan.nodes.datastream + +import org.apache.calcite.plan.{RelOptCluster, RelTraitSet} +import org.apache.calcite.rel.`type`.RelDataType +import org.apache.calcite.rel.core.AggregateCall +import org.apache.calcite.rel.{RelNode, RelWriter, SingleRel} +import org.apache.flink.api.common.typeinfo.TypeInformation +import org.apache.flink.api.java.typeutils.RowTypeInfo +import org.apache.flink.streaming.api.datastream.DataStream +import org.apache.flink.table.api.{StreamTableEnvironment, TableException} +import org.apache.flink.table.calcite.FlinkRelBuilder.NamedWindowProperty +import org.apache.flink.table.calcite.FlinkTypeFactory +import org.apache.flink.table.runtime.aggregate.AggregateUtil.{CalcitePair, _} +import org.apache.flink.table.runtime.aggregate._ +import org.apache.flink.table.plan.nodes.CommonAggregate +import org.apache.flink.types.Row +import org.apache.calcite.rel.core.Window +import org.apache.calcite.rel.core.Window.Group + +import java.util.{List => JList} + +import scala.collection.JavaConverters._ +import scala.collection.immutable.IndexedSeq + +class DataStreamOverAggregate( + logicWindow: Window, + namedProperties: Seq[NamedWindowProperty], + cluster: RelOptCluster, + traitSet: RelTraitSet, + inputNode: RelNode, + rowRelDataType: RelDataType, + inputType: RelDataType) + extends SingleRel(cluster, traitSet, inputNode) + with CommonAggregate + with DataStreamRel { + + override def deriveRowType(): RelDataType = rowRelDataType + + override def copy(traitSet: RelTraitSet, inputs: JList[RelNode]): RelNode = { + new DataStreamOverAggregate( + logicWindow, + namedProperties, + cluster, + traitSet, + inputs.get(0), + getRowType, + inputType) + } + + override def toString: String = { + val ( + overWindow: Group, + partitionKeys: Array[Int], + namedAggregates: IndexedSeq[CalcitePair[AggregateCall, String]] + ) = genPartitionKeysAndNamedAggregates + + s"Aggregate(${ + if (!partitionKeys.isEmpty) { + s"partitionBy: (${groupingToString(inputType, partitionKeys)}), " + } else { + "" + } + }window: ($overWindow), " + + s"select: (${ + aggregationToString( + inputType, + partitionKeys, + getRowType, + namedAggregates, + namedProperties) + }))" + } + + override def explainTerms(pw: RelWriter): RelWriter = { + val ( + overWindow: Group, + partitionKeys: Array[Int], + namedAggregates: IndexedSeq[CalcitePair[AggregateCall, String]] + ) = genPartitionKeysAndNamedAggregates + + super.explainTerms(pw) + .itemIf("partitionBy", groupingToString(inputType, partitionKeys), !partitionKeys.isEmpty) + .item("overWindow", overWindow) + .item( + "select", aggregationToString( + inputType, + partitionKeys, + getRowType, + namedAggregates, + namedProperties)) + } + + override def translateToPlan(tableEnv: StreamTableEnvironment): DataStream[Row] = { + + if (logicWindow.groups.size > 1) { + throw new UnsupportedOperationException( + "Unsupported different over window in the same projection") + } + + val overWindow: org.apache.calcite.rel.core.Window.Group = logicWindow.groups.get(0) + + val inputDS = input.asInstanceOf[DataStreamRel].translateToPlan(tableEnv) + + // TODO timeDomain will be fixed, once FLINK-5884 is solved --- End diff -- We can also think about encoding the time semantics as special data types. proctime() would produce this special data type against we can check on the plan level. When translating the plan we ignore proctime and resulting attribute. > Add [partitioned] processing time OVER RANGE BETWEEN UNBOUNDED PRECEDING > aggregation to SQL > ------------------------------------------------------------------------------------------- > > Key: FLINK-5803 > URL: https://issues.apache.org/jira/browse/FLINK-5803 > Project: Flink > Issue Type: Sub-task > Components: Table API & SQL > Reporter: sunjincheng > Assignee: sunjincheng > > The goal of this issue is to add support for OVER RANGE aggregations on > processing time streams to the SQL interface. > Queries similar to the following should be supported: > {code} > SELECT > a, > SUM(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN UNBOUNDED > PRECEDING AND CURRENT ROW) AS sumB, > MIN(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN UNBOUNDED > PRECEDING AND CURRENT ROW) AS minB > FROM myStream > {code} > The following restrictions should initially apply: > - All OVER clauses in the same SELECT clause must be exactly the same. > - The ORDER BY clause may only have procTime() as parameter. procTime() is a > parameterless scalar function that just indicates processing time mode. > - bounded PRECEDING is not supported (see FLINK-5654) > - FOLLOWING is not supported. > The restrictions will be resolved in follow up issues. If we find that some > of the restrictions are trivial to address, we can add the functionality in > this issue as well. > This issue includes: > - Design of the DataStream operator to compute OVER ROW aggregates > - Translation from Calcite's RelNode representation (LogicalProject with > RexOver expression). -- This message was sent by Atlassian JIRA (v6.3.15#6346)