[ 
https://issues.apache.org/jira/browse/FLINK-5803?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15882975#comment-15882975
 ] 

ASF GitHub Bot commented on FLINK-5803:
---------------------------------------

Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3397#discussion_r102951067
  
    --- Diff: 
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
 ---
    @@ -0,0 +1,216 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +package org.apache.flink.table.plan.nodes.datastream
    +
    +import org.apache.calcite.plan.{RelOptCluster, RelTraitSet}
    +import org.apache.calcite.rel.`type`.RelDataType
    +import org.apache.calcite.rel.core.AggregateCall
    +import org.apache.calcite.rel.{RelNode, RelWriter, SingleRel}
    +import org.apache.flink.api.common.typeinfo.TypeInformation
    +import org.apache.flink.api.java.typeutils.RowTypeInfo
    +import org.apache.flink.streaming.api.datastream.DataStream
    +import org.apache.flink.table.api.{StreamTableEnvironment, TableException}
    +import org.apache.flink.table.calcite.FlinkRelBuilder.NamedWindowProperty
    +import org.apache.flink.table.calcite.FlinkTypeFactory
    +import 
org.apache.flink.table.runtime.aggregate.AggregateUtil.{CalcitePair, _}
    +import org.apache.flink.table.runtime.aggregate._
    +import org.apache.flink.table.plan.nodes.CommonAggregate
    +import org.apache.flink.types.Row
    +import org.apache.calcite.rel.core.Window
    +import org.apache.calcite.rel.core.Window.Group
    +
    +import java.util.{List => JList}
    +
    +import scala.collection.JavaConverters._
    +import scala.collection.immutable.IndexedSeq
    +
    +class DataStreamOverAggregate(
    +    logicWindow: Window,
    +    namedProperties: Seq[NamedWindowProperty],
    +    cluster: RelOptCluster,
    +    traitSet: RelTraitSet,
    +    inputNode: RelNode,
    +    rowRelDataType: RelDataType,
    +    inputType: RelDataType)
    +  extends SingleRel(cluster, traitSet, inputNode)
    +  with CommonAggregate
    +  with DataStreamRel {
    +
    +  override def deriveRowType(): RelDataType = rowRelDataType
    +
    +  override def copy(traitSet: RelTraitSet, inputs: JList[RelNode]): 
RelNode = {
    +    new DataStreamOverAggregate(
    +      logicWindow,
    +      namedProperties,
    +      cluster,
    +      traitSet,
    +      inputs.get(0),
    +      getRowType,
    +      inputType)
    +  }
    +
    +  override def toString: String = {
    +    val (
    +      overWindow: Group,
    +      partitionKeys: Array[Int],
    +      namedAggregates: IndexedSeq[CalcitePair[AggregateCall, String]]
    +      ) = genPartitionKeysAndNamedAggregates
    +
    +    s"Aggregate(${
    +      if (!partitionKeys.isEmpty) {
    +        s"partitionBy: (${groupingToString(inputType, partitionKeys)}), "
    +      } else {
    +        ""
    +      }
    +    }window: ($overWindow), " +
    +      s"select: (${
    +        aggregationToString(
    +          inputType,
    +          partitionKeys,
    +          getRowType,
    +          namedAggregates,
    +          namedProperties)
    +      }))"
    +  }
    +
    +  override def explainTerms(pw: RelWriter): RelWriter = {
    +    val (
    +      overWindow: Group,
    +      partitionKeys: Array[Int],
    +      namedAggregates: IndexedSeq[CalcitePair[AggregateCall, String]]
    +      ) = genPartitionKeysAndNamedAggregates
    +
    +    super.explainTerms(pw)
    +    .itemIf("partitionBy", groupingToString(inputType, partitionKeys), 
!partitionKeys.isEmpty)
    +    .item("overWindow", overWindow)
    +    .item(
    +      "select", aggregationToString(
    +        inputType,
    +        partitionKeys,
    +        getRowType,
    +        namedAggregates,
    +        namedProperties))
    +  }
    +
    +  override def translateToPlan(tableEnv: StreamTableEnvironment): 
DataStream[Row] = {
    +
    +    if (logicWindow.groups.size > 1) {
    +      throw new UnsupportedOperationException(
    +        "Unsupported different over window in the same projection")
    +    }
    +
    +    val overWindow: org.apache.calcite.rel.core.Window.Group = 
logicWindow.groups.get(0)
    +
    +    val inputDS = 
input.asInstanceOf[DataStreamRel].translateToPlan(tableEnv)
    +
    +    // TODO timeDomain will be fixed, once FLINK-5884 is solved
    +    // both ROWS and RANGE clause with UNBOUNDED PRECEDING and CURRENT ROW 
condition.
    +    if (/*logicWindow.timeDomain.equals(
    +        TimeDomain.PROCESSING_TIME && */
    +      overWindow.lowerBound.isUnbounded && 
overWindow.upperBound.isCurrentRow) {
    +       createUnboundedAndCurrentRowProcessingTimeOverWindow(inputDS)
    +    } else {
    +      throw new UnsupportedOperationException(
    +        "Over window only support UNBOUNDED PRECEDING and CURRENT ROW 
condition.")
    +    }
    +
    +  }
    +
    +  def createUnboundedAndCurrentRowProcessingTimeOverWindow(
    +    inputDS: DataStream[Row]): DataStream[Row]  = {
    +
    +    val (
    +      overWindow: Group,
    +      partitionKeys: Array[Int],
    +      namedAggregates: IndexedSeq[CalcitePair[AggregateCall, String]]
    +      ) = genPartitionKeysAndNamedAggregates
    +
    +    val allInputProjections = (for (i <- 0 until inputType.getFieldCount) 
yield i).toArray
    --- End diff --
    
    `(0 until inputType.getFieldCount).toArray`


> Add [partitioned] processing time OVER RANGE BETWEEN UNBOUNDED PRECEDING 
> aggregation to SQL
> -------------------------------------------------------------------------------------------
>
>                 Key: FLINK-5803
>                 URL: https://issues.apache.org/jira/browse/FLINK-5803
>             Project: Flink
>          Issue Type: Sub-task
>          Components: Table API & SQL
>            Reporter: sunjincheng
>            Assignee: sunjincheng
>
> The goal of this issue is to add support for OVER RANGE aggregations on 
> processing time streams to the SQL interface.
> Queries similar to the following should be supported:
> {code}
> SELECT 
>   a, 
>   SUM(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN UNBOUNDED 
> PRECEDING AND CURRENT ROW) AS sumB,
>   MIN(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN UNBOUNDED 
> PRECEDING AND CURRENT ROW) AS minB
> FROM myStream
> {code}
> The following restrictions should initially apply:
> - All OVER clauses in the same SELECT clause must be exactly the same.
> - The ORDER BY clause may only have procTime() as parameter. procTime() is a 
> parameterless scalar function that just indicates processing time mode.
> - bounded PRECEDING is not supported (see FLINK-5654)
> - FOLLOWING is not supported.
> The restrictions will be resolved in follow up issues. If we find that some 
> of the restrictions are trivial to address, we can add the functionality in 
> this issue as well.
> This issue includes:
> - Design of the DataStream operator to compute OVER ROW aggregates
> - Translation from Calcite's RelNode representation (LogicalProject with 
> RexOver expression).



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Reply via email to