rmetzger commented on code in PR #721:
URL: https://github.com/apache/flink-web/pull/721#discussion_r1521014951


##########
docs/content/posts/2024-03-xx-release-1.19.0.md:
##########
@@ -0,0 +1,470 @@
+---
+authors:
+- LincolnLee:
+  name: "Lincoln Lee"
+  twitter: lincoln_86xy
+
+date: "2024-03-xxT22:00:00Z"
+subtitle: ""
+title: Announcing the Release of Apache Flink 1.19
+aliases:
+- /news/2024/03/xx/release-1.19.0.html
+---
+
+The Apache Flink PMC is pleased to announce the release of Apache Flink 
1.19.0. As usual, we are
+looking at a packed release with a wide variety of improvements and new 
features. Overall, 162
+people contributed to this release completing 33 FLIPs and 600+ issues. Thank 
you!
+
+Let's dive into the highlights.
+
+# Flink SQL Improvements
+
+## Custom Parallelism for Table/SQL Sources
+
+Now in Flink 1.19, you can set a custom parallelism for performance tuning via 
the `scan.parallelism`
+option. The first available connector is DataGen (Kafka connector is on the 
way). Here is an example
+using SQL Client:
+
+```sql
+-- set parallelism within the ddl
+CREATE TABLE Orders (
+    order_number BIGINT,
+    price        DECIMAL(32,2),
+    buyer        ROW<first_name STRING, last_name STRING>,
+    order_time   TIMESTAMP(3)
+) WITH (
+    'connector' = 'datagen',
+    'scan.parallelism' = '4'
+);
+
+-- or set parallelism via dynamic table option
+SELECT * FROM Orders /*+ OPTIONS('scan.parallelism'='4') */;
+```
+
+**More Information**
+* 
[Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sourcessinks/#scan-table-source)
+* [FLIP-367: Support Setting Parallelism for Table/SQL 
Sources](https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=263429150)
+
+
+## Configurable SQL Gateway Java Options
+
+A new option `env.java.opts.sql-gateway` for specifying the Java options is 
introduced in Flink 1.19,
+so you can fine-tune the memory settings, garbage collection behavior, and 
other relevant Java
+parameters for SQL Gateway.
+
+**More Information**
+* [FLINK-33203](https://issues.apache.org/jira/browse/FLINK-33203)
+
+
+## Configure Different State TTLs using SQL Hint
+
+Starting from Flink 1.18, Table API and SQL users can set state time-to-live 
(TTL) individually for
+stateful operators via the SQL compiled plan. In Flink 1.19, users have a more 
flexible way to
+specify custom TTL values for regular joins and group aggregations directly 
within their queries by [utilizing the STATE_TTL 
hint](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/hints/#state-ttl-hints).
+This improvement means that you no longer need to alter your compiled plan to 
set specific TTLs for
+these frequently used operators. With the introduction of `STATE_TTL` hints, 
you can streamline your workflow and
+dynamically adjust the TTL based on your operational requirements.
+
+Here is an example:
+```sql
+-- set state ttl for join
+SELECT /*+ STATE_TTL('Orders'= '1d', 'Customers' = '20d') */ *
+FROM Orders LEFT OUTER JOIN Customers
+    ON Orders.o_custkey = Customers.c_custkey;
+
+-- set state ttl for aggregation
+SELECT /*+ STATE_TTL('o' = '1d') */ o_orderkey, SUM(o_totalprice) AS revenue
+FROM Orders AS o
+GROUP BY o_orderkey;
+```
+
+**More Information**
+* 
[Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/hints/#state-ttl-hints)
+* [FLIP-373: Support Configuring Different State TTLs using SQL 
Hint](https://cwiki.apache.org/confluence/display/FLINK/FLIP-373%3A+Support+Configuring+Different+State+TTLs+using+SQL+Hint)
+
+
+## Named Parameters for Functions and Procedures
+
+Named parameters now can be used when calling a function or stored procedure. 
With named parameters,
+users do not need to strictly specify the parameter position, just specify the 
parameter name and its
+corresponding value. At the same time, if non-essential parameters are not 
specified, they will default to being filled with null.
+
+Here's an example of defining a function with one mandatory parameter and two 
optional parameters using named parameters:
+```java
+public static class NamedArgumentsTableFunction extends TableFunction<Object> {
+
+       @FunctionHint(
+                       output = @DataTypeHint("STRING"),
+                       arguments = {
+                                       @ArgumentHint(name = "in1", isOptional 
= false, type = @DataTypeHint("STRING")),
+                                       @ArgumentHint(name = "in2", isOptional 
= true, type = @DataTypeHint("STRING")),
+                                       @ArgumentHint(name = "in3", isOptional 
= true, type = @DataTypeHint("STRING"))})
+       public void eval(String arg1, String arg2, String arg3) {
+               collect(arg1 + ", " + arg2 + "," + arg3);
+       }
+
+}
+```
+When calling the function in SQL, parameters can be specified by name, for 
example:
+```sql
+SELECT * FROM TABLE(myFunction(in1 => 'v1', in3 => 'v3', in2 => 'v2'))
+```
+Also the optional parameters can be omitted:
+```sql
+SELECT * FROM TABLE(myFunction(in1 => 'v1'))
+```
+
+**More Information**
+* 
[Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/functions/udfs/#named-parameters)
+* [FLIP-387: Support named parameters for functions and call 
procedures](https://cwiki.apache.org/confluence/display/FLINK/FLIP-387%3A+Support+named+parameters+for+functions+and+call+procedures)
+
+## Window TVF Aggregation Features
+
+* Supports SESSION Window TVF in Streaming Mode<br />
+Now users can use SESSION Window TVF in streaming mode. A simple example is as 
follows:
+```sql
+-- session window with partition keys
+SELECT * FROM TABLE(
+   SESSION(TABLE Bid PARTITION BY item, DESCRIPTOR(bidtime), INTERVAL '5' 
MINUTES));
+
+-- apply aggregation on the session windowed table with partition keys
+SELECT window_start, window_end, item, SUM(price) AS total_price
+FROM TABLE(
+    SESSION(TABLE Bid PARTITION BY item, DESCRIPTOR(bidtime), INTERVAL '5' 
MINUTES))
+GROUP BY item, window_start, window_end;
+```
+* Supports Changelog Inputs For Window TVF Aggregation<br />
+  Window aggregation operators (generated based on Window TVF Function) can 
now handle changelog
+  streams (e.g., CDC data sources, etc.). Users are recommended to migrate 
from legacy window
+  aggregation to the new syntax for more complete feature support.
+
+**More Information**
+* 
[Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/window-tvf/#session)
+
+## New UDF Type: AsyncScalarFunction
+
+The common UDF type `ScalarFunction` works well for CPU-intensive operations, 
but less well for IO
+bound or otherwise long-running computations. In Flink 1.19, we have a new 
`AsyncScalarFunction` 
+which is a user-defined asynchronous `ScalarFunction` allows for issuing 
concurrent function calls
+asynchronously.
+
+**More Information**
+* [FLIP-400: AsyncScalarFunction for asynchronous scalar function 
support](https://cwiki.apache.org/confluence/display/FLINK/FLIP-400%3A+AsyncScalarFunction+for+asynchronous+scalar+function+support)
+
+## Tuning: MiniBatch Optimization for Regular Joins
+
+The record amplification is a pain point when performing cascading joins in 
Flink, now in Flink 1.19,
+the new mini-batch optimization can be used for regular join to reduce 
intermediate result in such
+cascading join scenarios.
+
+<div style="text-align: center;">
+<img src="/img/blog/2024-03-xx-release-1.19.0/minibatch_join.png" 
style="width:90%;margin:15px">
+</div>
+
+**More Information**
+* 
[minibatch-regular-joins](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/tuning/#minibatch-regular-joins).
+* [FLIP-415: Introduce a new join operator to support 
minibatch](https://cwiki.apache.org/confluence/display/FLINK/FLIP-415%3A+Introduce+a+new+join+operator+to+support+minibatch)
+
+# Runtime & Coordination Improvements
+
+## Dynamic Source Parallelism Inference for Batch Jobs
+
+In Flink 1.19, we have supported dynamic source parallelism inference for 
batch jobs, which allows
+source connectors to dynamically infer the parallelism based on the actual 
amount of data to consume.
+This feature is a significant improvement over previous versions, which only 
assigned a fixed default
+parallelism to source vertices.
+Source connectors need to implement the inference interface to enable dynamic 
parallelism inference.
+Currently, the FileSource connector has already been developed with this 
functionality in place.
+Additionally, the configuration 
`execution.batch.adaptive.auto-parallelism.default-source-parallelism`
+will be used as the upper bound of source parallelism inference. And now it 
will not default to 1.
+Instead, if it is not set, the upper bound of allowed parallelism set via
+`execution.batch.adaptive.auto-parallelism.max-parallelism` will be used. If 
that configuration is
+also not set, the default parallelism set via `parallelism.default` or 
`StreamExecutionEnvironment#setParallelism()`
+will be used instead.
+
+**More Information**
+* 
[Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/deployment/elastic_scaling/#enable-dynamic-parallelism-inference-support-for-sources).
+* [FLIP-379: Support dynamic source parallelism inference for batch 
jobs](https://cwiki.apache.org/confluence/display/FLINK/FLIP-379%3A+Dynamic+source+parallelism+inference+for+batch+jobs)
+
+## Standard YAML for FLINK Configuration

Review Comment:
   ```suggestion
   ## Standard YAML for Flink Configuration
   ```



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@flink.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to