JunRuiLee commented on code in PR #721: URL: https://github.com/apache/flink-web/pull/721#discussion_r1520726747
########## docs/content/posts/2024-03-xx-release-1.19.0.md: ########## @@ -0,0 +1,456 @@ +--- +authors: +- LincolnLee: + name: "Lincoln Lee" + twitter: lincoln_86xy + +date: "2024-03-xxT22:00:00Z" +subtitle: "" +title: Announcing the Release of Apache Flink 1.19 +aliases: +- /news/2024/03/xx/release-1.19.0.html +--- + +The Apache Flink PMC is pleased to announce the release of Apache Flink 1.19.0. As usual, we are +looking at a packed release with a wide variety of improvements and new features. Overall, 162 +people contributed to this release completing 33 FLIPS and 600+ issues. Thank you! + +Let's dive into the highlights. + +# Flink SQL Improvements + +## Custom Parallelism for Table/SQL Sources + +Now in Flink 1.19, you can set a custom parallelism for performance tuning via the `scan.parallelism` +option. The first available connector is DataGen (Kafka connector is on the way). Here is an example +using SQL Client: + +```sql +-- set parallelism within the ddl +CREATE TABLE Orders ( + order_number BIGINT, + price DECIMAL(32,2), + buyer ROW<first_name STRING, last_name STRING>, + order_time TIMESTAMP(3) +) WITH ( + 'connector' = 'datagen', + 'scan.parallelism' = '4' +); + +-- or set parallelism via dynamic table option +SELECT * FROM Orders /*+ OPTIONS('scan.parallelism'='4') */; +``` + +**More Information** +* [Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sourcessinks/#scan-table-source) +* [FLIP-367: Support Setting Parallelism for Table/SQL Sources](https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=263429150) + + +## Configurable SQL Gateway Java Options + +A new option `env.java.opts.sql-gateway` for specifying the Java options, so you can fine-tune the +memory settings, garbage collection behavior, and other relevant Java parameters for SQL Gateway. + +**More Information** +* [FLINK-33203](https://issues.apache.org/jira/browse/FLINK-33203) + + +## Configure Different State TTLs using SQL Hint + +Starting from Flink 1.18, Table API and SQL users can set state time-to-live (TTL) individually for +stateful operators via the SQL compiled plan. In Flink 1.19, users have a more flexible way to +specify custom TTL values for regular joins and group aggregations directly within their queries by [utilizing the STATE_TTL hint](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/hints/#state-ttl-hints). +This improvement means that you no longer need to alter your compiled plan to set specific TTLs for +these frequently used operators. With the introduction of `STATE_TTL` hints, you can streamline your workflow and +dynamically adjust the TTL based on your operational requirements. + +Here is an example: +```sql +-- set state ttl for join +SELECT /*+ STATE_TTL('Orders'= '1d', 'Customers' = '20d') */ * +FROM Orders LEFT OUTER JOIN Customers + ON Orders.o_custkey = Customers.c_custkey; + +-- set state ttl for aggregation +SELECT /*+ STATE_TTL('o' = '1d') */ o_orderkey, SUM(o_totalprice) AS revenue +FROM Orders AS o +GROUP BY o_orderkey; +``` + +**More Information** +* [Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/hints/#state-ttl-hints) +* [FLIP-373: Support Configuring Different State TTLs using SQL Hint](https://cwiki.apache.org/confluence/display/FLINK/FLIP-373%3A+Support+Configuring+Different+State+TTLs+using+SQL+Hint) + + +## Named Parameters for Functions and Procedures + +Named parameters now can be used when calling a function or stored procedure. With named parameters, +users do not need to strictly specify the parameter position, just specify the parameter name and its +corresponding value. At the same time, if non-essential parameters are not specified, they will default to being filled with null. + +Here's an example of defining a function with one mandatory parameter and two optional parameters using named parameters: +```java +public static class NamedArgumentsTableFunction extends TableFunction<Object> { + + @FunctionHint( + output = @DataTypeHint("STRING"), + arguments = { + @ArgumentHint(name = "in1", isOptional = false, type = @DataTypeHint("STRING")), + @ArgumentHint(name = "in2", isOptional = true, type = @DataTypeHint("STRING")), + @ArgumentHint(name = "in3", isOptional = true, type = @DataTypeHint("STRING"))}) + public void eval(String arg1, String arg2, String arg3) { + collect(arg1 + ", " + arg2 + "," + arg3); + } + +} +``` +When calling the function in SQL, parameters can be specified by name, for example: +```sql +SELECT * FROM TABLE(myFunction(in1 => 'v1', in3 => 'v3', in2 => 'v2')) +``` +Also the optional parameters can be omitted: +```sql +SELECT * FROM TABLE(myFunction(in1 => 'v1')) +``` + +**More Information** +* [Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/functions/udfs/#named-parameters) +* [FLIP-387: Support named parameters for functions and call procedures](https://cwiki.apache.org/confluence/display/FLINK/FLIP-387%3A+Support+named+parameters+for+functions+and+call+procedures) + +## Window TVF Aggregation Features + +* Supports SESSION Window TVF in Streaming Mode +Now users can use SESSION Window TVF in streaming mode. A simple example is as follows: +```sql +-- session window with partition keys +SELECT * FROM TABLE( + SESSION(TABLE Bid PARTITION BY item, DESCRIPTOR(bidtime), INTERVAL '5' MINUTES)); + +-- apply aggregation on the session windowed table with partition keys +SELECT window_start, window_end, item, SUM(price) AS total_price +FROM TABLE( + SESSION(TABLE Bid PARTITION BY item, DESCRIPTOR(bidtime), INTERVAL '5' MINUTES)) +GROUP BY item, window_start, window_end; +``` +* Supports Changelog Inputs For Window TVF Aggregation + Window aggregation operators (generated based on Window TVF Function) can now handle changelog + streams (e.g., CDC data sources, etc.) without issue. Users are recommended to migrate from legacy + window aggregation to the new syntax for more complete feature support. + +**More Information** +* [Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/window-tvf/#session) + + +## Tuning: MiniBatch Optimization for Regular Joins + +The record amplification is a pain point when performing cascading joins in Flink, now in Flink 1.19, +the new mini-batch optimization can be used for regular join to reduce intermediate result in such +cascading join scenarios. + +<div style="text-align: center;"> +<img src="/img/blog/2024-03-xx-release-1.19.0/minibatch_join.png" style="width:90%;margin:15px"> +</div> + +**More Information** +* [minibatch-regular-joins](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/tuning/#minibatch-regular-joins). +* [FLIP-415: Introduce a new join operator to support minibatch](https://cwiki.apache.org/confluence/display/FLINK/FLIP-415%3A+Introduce+a+new+join+operator+to+support+minibatch) + +# Runtime & Coordination Improvements + +## Dynamic Source Parallelism Inference for Batch Jobs + +In Flink 1.19, we have supported dynamic source parallelism inference for batch jobs, which allows +source connectors to dynamically infer the parallelism based on the actual amount of data to consume. +This feature is a significant improvement over previous versions, which only assigned a fixed default +parallelism to source vertices. +Source connectors need to implement the inference interface to enable dynamic parallelism inference. +Currently, the FileSource connector has already been developed with this functionality in place. +Additionally, the configuration `execution.batch.adaptive.auto-parallelism.default-source-parallelism` +will be used as the upper bound of source parallelism inference. And now it will not default to 1. +Instead, if it is not set, the upper bound of allowed parallelism set via +`execution.batch.adaptive.auto-parallelism.max-parallelism` will be used. If that configuration is +also not set, the default parallelism set via `parallelism.default` or `StreamExecutionEnvironment#setParallelism()` +will be used instead. + +**More Information** +* [Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/deployment/elastic_scaling/#enable-dynamic-parallelism-inference-support-for-sources). +* [FLIP-379: Support dynamic source parallelism inference for batch jobs](https://cwiki.apache.org/confluence/display/FLINK/FLIP-379%3A+Dynamic+source+parallelism+inference+for+batch+jobs) + +## Standard YAML for FLINK Configuration + +Starting with Flink 1.19, Flink has officially introduced full support for the standard YAML 1.2 +syntax. The default configuration file has been changed to `config.yaml` and placed in the `conf/` +directory. Users should directly modify this file to configure Flink. +If users want to use the legacy configuration file `flink-conf.yaml`, users just need to copy this +file into the `conf/` directory. Once the legacy configuration file `flink-conf.yaml` is detected, +Flink will prioritize using it as the configuration file. And in the upcoming Flink 2.0, the +`flink-conf.yaml` configuration file will no longer work. + +**More Information** +* [flink-configuration-file](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/deployment/config/#flink-configuration-file) +* [FLIP-366: Support standard YAML for FLINK configuration](https://cwiki.apache.org/confluence/display/FLINK/FLIP-366%3A+Support+standard+YAML+for+FLINK+configuration?src=contextnavpagetreemode) + +## Profiling JobManager/TaskManager on Flink Web + +In Flink 1.19, we support triggering profiling at the JobManager/TaskManager level, allowing users to +create a profiling instance with arbitrary intervals and event modes (supported by [async-profiler](https://github.com/async-profiler/async-profiler)). +Users can easily submit profiles and export results in the Flink Web UI. + +For example, +- First, users should identify the candidate TaskManager/JobManager with performance bottleneck for profiling and switch to the corresponding TaskManager/JobManager page (profiler tab). +- The user simply clicks on the `Create Profiling Instance` button to submit a profiling instance with specified period and mode. (The description of the profiling mode will be displayed when hovering over the corresponding mode.) +- Once the profiling instance is complete, the user can easily download the interactive HTML file by clicking on the link. + +<div style="text-align: center;"> +<img src="/img/blog/2024-03-xx-release-1.19.0/profiling.png" style="width:90%;margin:15px"> +</div> + +Profiling result: +<div style="text-align: center;"> +<img src="/img/blog/2024-03-xx-release-1.19.0/profiling-res.png" style="width:90%;margin:15px"> +</div> + +**More Information** +* [Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/debugging/profiler/) +* [FLIP-375: Built-in cross-platform powerful java profiler](https://cwiki.apache.org/confluence/x/64lEE) + +## New Config Options for Administrator JVM Options + +A set of administrator JVM options are available, which prepend the user-set extra JVM options for +platform-wide JVM tuning. + +**More Information** +* [Documentation](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/deployment/config/#jvm-and-logging-options) +* [FLIP-397: Add config options for administrator JVM options](https://cwiki.apache.org/confluence/display/FLINK/FLIP-397%3A+Add+config+options+for+administrator+JVM+options?src=jira) + +# Checkpoints Improvements + +## Using Larger Checkpointing Interval When Source is Processing Backlog + +`ProcessingBacklog` is introduced to demonstrate whether a record should be processed with low latency +or high throughput. `ProcessingBacklog` can be set by source operators, and can be used to change the +checkpoint interval of a job during runtime. + +**More Information** +* [FLINK-32514](https://issues.apache.org/jira/browse/FLINK-32514) +* [FLIP-309: Support using larger checkpointing interval when source is processing backlog](https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog + +## CheckpointsCleaner Clean Individual Checkpoint States in Parallel + +Now when disposing of no longer needed checkpoints, every state handle/state file will be disposed +in parallel by the ioExecutor, vastly improving the disposing speed of a single checkpoint (for +large checkpoints the disposal time can be improved from 10 minutes to < 1 minute) . The old +behavior can be restored by setting `state.checkpoint.cleaner.parallel-mode` to false. + +**More Information** +* [FLINK-33090](https://issues.apache.org/jira/browse/FLINK-33090) + +## Trigger Checkpoints through command line client + +The command line interface supports triggering a checkpoint manually. Usage: +```shell +./bin/flink checkpoint $JOB_ID [-full] +``` +By specifying the '-full' option, a full checkpoint is triggered. Otherwise an incremental +checkpoint is triggered if the job is configured to take incremental ones periodically. + +**More Information** +* [FLINK-6755](https://issues.apache.org/jira/browse/FLINK-6755) + + +# Important Deprecations + +In preparation for the release of Flink 2.0 next year, the community has decided to officially deprecate multiple APIs +that were approaching end of life for a while. + +* Flink's [`org.apache.flink.api.common.time.Time`](https://github.com/apache/flink/blob/master/flink-core/src/main/java/org/apache/flink/api/common/time/Time.java) is now officially deprecated and will be dropped in Flink 2.0 +Please migrate it to Java's own `Duration` class. Methods supporting the `Duration` class that replace the deprecated `Time`-based methods were introduced. +* [`org.apache.flink.runtime.jobgraph.RestoreMode#LEGACY`](https://github.com/apache/flink/blob/release-1.19/flink-runtime/src/main/java/org/apache/flink/runtime/jobgraph/RestoreMode.java#L40) is deprecated. Please use [`RestoreMode#CLAIM`](https://github.com/apache/flink/blob/release-1.19/flink-runtime/src/main/java/org/apache/flink/runtime/jobgraph/RestoreMode.java#L31) or [`RestoreMode#NO_CLAIM`](https://github.com/apache/flink/blob/release-1.19/flink-runtime/src/main/java/org/apache/flink/runtime/jobgraph/RestoreMode.java#L34) mode instead to get a clear state file ownership when restoring. +* The old method of resolving schema compatibility has been deprecated, please migrate to the new method following [Migrating from deprecated `TypeSerializerSnapshot#resolveSchemaCompatibility(TypeSerializer newSerializer)` before Flink 1.19](https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/custom_serialization/#migrating-from-deprecated-typeserializersnapshotresolveschemacompatibilityt). +* Configuring serialization behavior through hard codes is deprecated, e.g., [`ExecutionConfig#enableForceKryo()`](https://github.com/apache/flink/blob/release-1.19/flink-core/src/main/java/org/apache/flink/api/common/ExecutionConfig.java#L643). Please use the options +`pipeline.serialization-config`, `pipeline.force-avro`, `pipeline.force-kryo`, and `pipeline.generic-types`. Registration of instance-level serializers is deprecated, using class-level serializers instead. +* We have deprecated all `setXxx` and `getXxx` methods except [`getString(String key, String defaultValue)`](https://github.com/apache/flink/blob/release-1.19/flink-core/src/main/java/org/apache/flink/configuration/Configuration.java#L176) +and [`setString(String key, String value)`](https://github.com/apache/flink/blob/release-1.19/flink-core/src/main/java/org/apache/flink/configuration/Configuration.java#L220), such as: `setInteger`, `setLong`, `getInteger` and `getLong` etc. +Users and developers are recommend to use get and set methods with `ConfigOption` instead of string as key. +* The non-`ConfigOption` objects in the `StreamExecutionEnvironment`, `CheckpointConfig`, and `ExecutionConfig` and their corresponding getter/setter interfaces are now be deprecated. These objects and methods are planned to be removed in Flink 2.0. The deprecated interfaces include the getter and setter methods of `RestartStrategy`, `CheckpointStorage`, and `StateBackend`. +* [`org.apache.flink.api.common.functions.RuntimeContext#getExecutionConfig`](https://github.com/apache/flink/blob/release-1.19/flink-core/src/main/java/org/apache/flink/api/common/functions/RuntimeContext.java#L191) is now officially deprecated and will be dropped in Flink 2.0. Please use [`getGlobalJobParameters()`](https://github.com/apache/flink/blob/release-1.19/flink-core/src/main/java/org/apache/flink/api/common/functions/RuntimeContext.java#L208) or [`isObjectReuseEnabled()`](https://github.com/apache/flink/blob/release-1.19/flink-core/src/main/java/org/apache/flink/api/common/functions/RuntimeContext.java#L216). Review Comment: @lincoln-lil The changes look good to me, thanks for updating! -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@flink.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org