[ https://issues.apache.org/jira/browse/FLINK-4469?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15671924#comment-15671924 ]
ASF GitHub Bot commented on FLINK-4469: --------------------------------------- Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/2653#discussion_r88336271 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/api/table/functions/TableFunction.scala --- @@ -0,0 +1,119 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.api.table.functions + +import org.apache.calcite.sql.SqlFunction +import org.apache.flink.annotation.Internal +import org.apache.flink.api.common.functions.InvalidTypesException +import org.apache.flink.api.common.typeinfo.TypeInformation +import org.apache.flink.api.java.typeutils.TypeExtractor +import org.apache.flink.api.table.{ValidationException, FlinkTypeFactory} + +import scala.collection.mutable.ListBuffer + +/** + * Base class for a user-defined table function (UDTF). A user-defined table functions works on + * one row as input and returns multiple rows as output. + * + * The behavior of a [[TableFunction]] can be defined by implementing a custom evaluation + * method. An evaluation method must be declared publicly and named "eval". Evaluation methods + * can also be overloaded by implementing multiple methods named "eval". + * + * User-defined functions must have a default constructor and must be instantiable during runtime. + * + * By default the result type of an evaluation method is determined by Flink's type extraction + * facilities. This is sufficient for basic types or simple POJOs but might be wrong for more + * complex, custom, or composite types. In these cases [[TypeInformation]] of the result type + * can be manually defined by overriding [[getResultType()]]. + * + * Internally, the Table/SQL API code generation works with primitive values as much as possible. + * If a user-defined table function should not introduce much overhead during runtime, it is + * recommended to declare parameters and result types as primitive types instead of their boxed + * classes. DATE/TIME is equal to int, TIMESTAMP is equal to long. + * + * @tparam T The type of the output row + */ +abstract class TableFunction[T] extends UserDefinedFunction with EvaluableFunction { + + private val rows: ListBuffer[T] = new ListBuffer + + /** + * Emit an output row + * + * @param row the output row + */ + protected def collect(row: T): Unit = { + // cache rows for now, maybe immediately process them further + rows += row + } + + + @Internal + def getRowsIterator = rows.toIterator + + @Internal + def clear() = rows.clear() + + // this method will not be called, because we need to register multiple sql function at one time + override private[flink] final def createSqlFunction( + name: String, + typeFactory: FlinkTypeFactory) + : SqlFunction = { + throw new UnsupportedOperationException("this method should not be called") + } + + // ---------------------------------------------------------------------------------------------- + + /** + * Returns the result type of the evaluation method with a given signature. + * + * This method needs to be overriden in case Flink's type extraction facilities are not + * sufficient to extract the [[TypeInformation]] based on the return type of the evaluation + * method. Flink's type extraction facilities can handle basic types or + * simple POJOs but might be wrong for more complex, custom, or composite types. + * + * @return [[TypeInformation]] of result type or null if Flink should determine the type + */ + def getResultType: TypeInformation[T] = null + + /** + * Returns [[TypeInformation]] about the operands of the evaluation method with a given + * signature. + * + * In order to perform operand type inference in SQL (especially when NULL is used) it might be + * necessary to determine the parameter [[TypeInformation]] of an evaluation method. + * By default Flink's type extraction facilities are used for this but might be wrong for + * more complex, custom, or composite types. + * + * @param signature signature of the method the operand types need to be determined + * @return [[TypeInformation]] of operand types + */ + def getParameterTypes(signature: Array[Class[_]]): Array[TypeInformation[_]] = { + signature.map { c => + try { + TypeExtractor.getForClass(c) + } catch { + case ite: InvalidTypesException => + throw new ValidationException( + s"Parameter types of scalar function '$this' cannot be " + --- End diff -- `scalar function` -> `table function`. Can you also extend the exception with instructions how to provide type information manually (I guess by overriding `getParameterTypes`, right?) > Add support for user defined table function in Table API & SQL > -------------------------------------------------------------- > > Key: FLINK-4469 > URL: https://issues.apache.org/jira/browse/FLINK-4469 > Project: Flink > Issue Type: New Feature > Components: Table API & SQL > Reporter: Jark Wu > Assignee: Jark Wu > > Normal user-defined functions, such as concat(), take in a single input row > and output a single output row. In contrast, table-generating functions > transform a single input row to multiple output rows. It is very useful in > some cases, such as look up in HBase by rowkey and return one or more rows. > Adding a user defined table function should: > 1. inherit from UDTF class with specific generic type T > 2. define one or more evel function. > NOTE: > 1. the eval method must be public and non-static. > 2. the generic type T is the row type returned by table function. Because of > Java type erasure, we can’t extract T from the Iterable. > 3. use {{collect(T)}} to emit table row > 4. eval method can be overload. Blink will choose the best match eval method > to call according to parameter types and number. > {code} > public class Word { > public String word; > public Integer length; > } > public class SplitStringUDTF extends UDTF<Word> { > public Iterable<Word> eval(String str) { > if (str != null) { > for (String s : str.split(",")) { > collect(new Word(s, s.length())); > } > } > } > } > // in SQL > tableEnv.registerFunction("split", new SplitStringUDTF()) > tableEnv.sql("SELECT a, b, t.* FROM MyTable, LATERAL TABLE(split(c)) AS > t(w,l)") > // in Java Table API > tableEnv.registerFunction("split", new SplitStringUDTF()) > // rename split table columns to “w” and “l” > table.crossApply("split(c) as (w, l)") > .select("a, b, w, l") > // without renaming, we will use the origin field names in the POJO/case/... > table.crossApply("split(c)") > .select("a, b, word, length") > // in Scala Table API > val split = new SplitStringUDTF() > table.crossApply(split('c) as ('w, 'l)) > .select('a, 'b, 'w, 'l) > // outerApply for outer join to a UDTF > table.outerApply(split('c)) > .select('a, 'b, 'word, 'length) > {code} > See [1] for more information about UDTF design. > [1] > https://docs.google.com/document/d/15iVc1781dxYWm3loVQlESYvMAxEzbbuVFPZWBYuY1Ek/edit# -- This message was sent by Atlassian JIRA (v6.3.4#6332)