[ https://issues.apache.org/jira/browse/FLINK-4469?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15671942#comment-15671942 ]
ASF GitHub Bot commented on FLINK-4469: --------------------------------------- Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/2653#discussion_r88339652 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/api/table/plan/nodes/FlinkCorrelate.scala --- @@ -0,0 +1,161 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.flink.api.table.plan.nodes + +import org.apache.calcite.plan.volcano.RelSubset +import org.apache.calcite.rel.RelNode +import org.apache.calcite.rel.`type`.RelDataType +import org.apache.calcite.rel.logical.LogicalTableFunctionScan +import org.apache.calcite.rex.{RexNode, RexCall} +import org.apache.calcite.sql.SemiJoinType +import org.apache.flink.api.common.functions.FlatMapFunction +import org.apache.flink.api.common.typeinfo.TypeInformation +import org.apache.flink.api.table.codegen.{CodeGenerator, GeneratedExpression, GeneratedFunction} +import org.apache.flink.api.table.functions.utils.TableSqlFunction +import org.apache.flink.api.table.runtime.FlatMapRunner +import org.apache.flink.api.table.typeutils.RowTypeInfo +import org.apache.flink.api.table.typeutils.TypeConverter._ +import org.apache.flink.api.table.{FlinkTypeFactory, TableConfig} + +import scala.collection.JavaConversions._ + +/** + * cross/outer apply a user-defined table function + */ +trait FlinkCorrelate { + + private[flink] def functionBody(generator: CodeGenerator, + udtfTypeInfo: TypeInformation[Any], + rowType: RelDataType, + rexCall: RexCall, + condition: RexNode, + config: TableConfig, + joinType: SemiJoinType, + expectedType: Option[TypeInformation[Any]]): String = { + + val returnType = determineReturnType( + rowType, + expectedType, + config.getNullCheck, + config.getEfficientTypeUsage) + + val (input1AccessExprs, input2AccessExprs) = generator.generateCorrelateAccessExprs + val crossResultExpr = generator.generateResultExpression(input1AccessExprs ++ input2AccessExprs, + returnType, rowType.getFieldNames) + + val input2NullExprs = input2AccessExprs.map( --- End diff -- I think `input2NullExpr` and `outerResultExpr` can be moved into the `else` branch of the `if (joinType == SemiJoinType.INNER)` condition. > Add support for user defined table function in Table API & SQL > -------------------------------------------------------------- > > Key: FLINK-4469 > URL: https://issues.apache.org/jira/browse/FLINK-4469 > Project: Flink > Issue Type: New Feature > Components: Table API & SQL > Reporter: Jark Wu > Assignee: Jark Wu > > Normal user-defined functions, such as concat(), take in a single input row > and output a single output row. In contrast, table-generating functions > transform a single input row to multiple output rows. It is very useful in > some cases, such as look up in HBase by rowkey and return one or more rows. > Adding a user defined table function should: > 1. inherit from UDTF class with specific generic type T > 2. define one or more evel function. > NOTE: > 1. the eval method must be public and non-static. > 2. the generic type T is the row type returned by table function. Because of > Java type erasure, we can’t extract T from the Iterable. > 3. use {{collect(T)}} to emit table row > 4. eval method can be overload. Blink will choose the best match eval method > to call according to parameter types and number. > {code} > public class Word { > public String word; > public Integer length; > } > public class SplitStringUDTF extends UDTF<Word> { > public Iterable<Word> eval(String str) { > if (str != null) { > for (String s : str.split(",")) { > collect(new Word(s, s.length())); > } > } > } > } > // in SQL > tableEnv.registerFunction("split", new SplitStringUDTF()) > tableEnv.sql("SELECT a, b, t.* FROM MyTable, LATERAL TABLE(split(c)) AS > t(w,l)") > // in Java Table API > tableEnv.registerFunction("split", new SplitStringUDTF()) > // rename split table columns to “w” and “l” > table.crossApply("split(c) as (w, l)") > .select("a, b, w, l") > // without renaming, we will use the origin field names in the POJO/case/... > table.crossApply("split(c)") > .select("a, b, word, length") > // in Scala Table API > val split = new SplitStringUDTF() > table.crossApply(split('c) as ('w, 'l)) > .select('a, 'b, 'w, 'l) > // outerApply for outer join to a UDTF > table.outerApply(split('c)) > .select('a, 'b, 'word, 'length) > {code} > See [1] for more information about UDTF design. > [1] > https://docs.google.com/document/d/15iVc1781dxYWm3loVQlESYvMAxEzbbuVFPZWBYuY1Ek/edit# -- This message was sent by Atlassian JIRA (v6.3.4#6332)