davidradl commented on code in PR #680:
URL: https://github.com/apache/flink-web/pull/680#discussion_r1371357451


##########
docs/content/posts/2023-10-10-release-1.18.0.md:
##########
@@ -0,0 +1,572 @@
+---
+authors:
+- JingGe:
+  name: "Jing Ge"
+  twitter: jingengineer
+- KonstantinKnauf:
+  name: "Konstantin Knauf"
+  twitter: snntrable
+- SergeyNuyanzin:
+  name: "Sergey Nuyanzin"
+  twitter: uckamello
+- QingshengRen:
+  name: "Qingsheng Ren"
+  twitter: renqstuite
+date: "2023-10-10T08:00:00Z"
+subtitle: ""
+title: Announcing the Release of Apache Flink 1.18
+aliases:
+- /news/2023/10/10/release-1.18.0.html
+---
+
+The Apache Flink PMC is pleased to announce the release of Apache Flink 
1.18.0. As usual, we are looking at a packed 
+release with a wide variety of improvements and new features. Overall, 174 
people contributed to this release completing 
+18 FLIPS and 700+ issues. Thank you!
+
+Let's dive into the highlights.
+
+# Towards a Streaming Lakehouse
+
+## Flink SQL Improvements
+
+### Introduce Flink JDBC Driver For SQL Gateway 
+
+Flink 1.18 comes with a JDBC Driver for the Flink SQL Gateway. So, you can now 
use any SQL Client that supports JDBC to 
+interact with your tables via Flink SQL. Here is an example using 
[SQLLine](https://julianhyde.github.io/sqlline/manual.html). 
+
+```shell
+sqlline> !connect jdbc:flink://localhost:8083
+```
+
+```shell
+sqlline version 1.12.0
+sqlline> !connect jdbc:flink://localhost:8083
+Enter username for jdbc:flink://localhost:8083:
+Enter password for jdbc:flink://localhost:8083:
+0: jdbc:flink://localhost:8083> CREATE TABLE T(
+. . . . . . . . . . . . . . .)>      a INT,
+. . . . . . . . . . . . . . .)>      b VARCHAR(10)
+. . . . . . . . . . . . . . .)>  ) WITH (
+. . . . . . . . . . . . . . .)>      'connector' = 'filesystem',
+. . . . . . . . . . . . . . .)>      'path' = 'file:///tmp/T.csv',
+. . . . . . . . . . . . . . .)>      'format' = 'csv'
+. . . . . . . . . . . . . . .)>  );
+No rows affected (0.122 seconds)
+0: jdbc:flink://localhost:8083> INSERT INTO T VALUES (1, 'Hi'), (2, 'Hello');
++----------------------------------+
+|              job id              |
++----------------------------------+
+| fbade1ab4450fc57ebd5269fdf60dcfd |
++----------------------------------+
+1 row selected (1.282 seconds)
+0: jdbc:flink://localhost:8083> SELECT * FROM T;
++---+-------+
+| a |   b   |
++---+-------+
+| 1 | Hi    |
+| 2 | Hello |
++---+-------+
+2 rows selected (1.955 seconds)
+0: jdbc:flink://localhost:8083>
+```
+
+**More Information**
+* 
[Documentation](https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/table/jdbcdriver/)
 
+* [FLIP-293: Introduce Flink Jdbc Driver For SQL 
Gateway](https://cwiki.apache.org/confluence/display/FLINK/FLIP-293%3A+Introduce+Flink+Jdbc+Driver+For+Sql+Gateway)
+
+
+### Stored Procedure Support for Flink Connectors
+
+Stored procedures have been an indispensable tool in traditional databases,
+offering a convenient way to encapsulate complex logic for data manipulation
+and administrative tasks. They also offer the potential for enhanced
+performance, since they can trigger the handling of data operations directly
+within an external database. Other popular data systems like Trino and Iceberg
+automate and simplify common maintenance tasks into small sets of procedures,
+which greatly reduces users' administrative burden.
+
+This new update primarily targets developers of Flink connectors, who can now
+predefine custom stored procedures into connectors via the Catalog interface.
+The primary benefit to users is that connector-specific tasks that previously
+may have required writing custom Flink code can now be replaced with simple
+calls that encapsulate, standardize, and potentially optimize the underlying
+operations. Users can execute procedures using the familiar `CALL` syntax, and
+discover a connector's available procedures with `SHOW PROCEDURES`. Stored
+procedures within connectors improves the extensibility of Flink's SQL and
+Table APIs, and should unlock smoother data access and management for users.
+
+**More Information**
+* 
[Documentation](https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/table/procedures/)
+* [FLIP-311: Support Call Stored 
Procedure](https://cwiki.apache.org/confluence/display/FLINK/FLIP-311%3A+Support+Call+Stored+Procedure)
+
+### Extended DDL Support
+
+From this release onwards, Flink supports
+
+- `REPLACE TABLE AS SELECT`
+- `CREATE OR REPLACE TABLE AS SELECT`
+
+and both these commands and previously supported `CREATE TABLE AS` can now 
support atomicity provided the underlying 
+connector also supports this.
+
+Moreover, Apache Flink now supports TRUNCATE TABLE in batch execution mode. 
Same as before, the underlying connector needs 
+to implement and provide this capability
+
+And, finally, we have also implemented support for adding, dropping and 
listing partitions via
+
+- `ALTER TABLE ADD PARTITION`
+- `ALTER TABLE DROP PARTITION`
+- `SHOW PARTITIONS`
+
+**More Information**
+- [Documentation on 
TRUNCATE](https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/table/sql/truncate/)
+- [Documentation on CREATE OR 
REPLACE](https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/table/sql/create/#create-or-replace-table)
+- [Documentation on ALTER 
TABLE](https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/table/sql/alter/#alter-table)
+- [FLIP-302: Support TRUNCATE TABLE statement in batch 
mode](https://cwiki.apache.org/confluence/display/FLINK/FLIP-302%3A+Support+TRUNCATE+TABLE+statement+in+batch+mode)
+- [FLIP-303: Support REPLACE TABLE AS SELECT 
statement](https://cwiki.apache.org/confluence/display/FLINK/FLIP-303%3A+Support+REPLACE+TABLE+AS+SELECT+statement)
+- [FLIP-305: Support atomic for CREATE TABLE AS SELECT(CTAS) 
statement](https://cwiki.apache.org/confluence/display/FLINK/FLIP-305%3A+Support+atomic+for+CREATE+TABLE+AS+SELECT%28CTAS%29+statement)
+
+### Time Traveling
+
+Flink supports the time travel SQL syntax for querying historical versions of 
data that allows users to specify a point 
+in time and retrieve the data and schema of a table as it appeared at that 
time. With time travel, users can easily 
+analyze and compare historical versions of data.
+
+**More information**
+- 
[Documentation](https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/table/sql/queries/time-travel/)

Review Comment:
   this link is not valid



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@flink.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to