This can be proved by contradiction, using the fact that the set of numbers less than any given number is finite.
val lemB = Q.prove (`!N m. INFINITE N ==> ?n. m <= n /\ n IN N`, spose_not_then strip_assume_tac >> `FINITE (count m)` by metis_tac [FINITE_COUNT] >> `N SUBSET (count m)` by (rw_tac set_ss [SUBSET_DEF] >> `~(m <= x)` by metis_tac [] >> decide_tac) >> metis_tac [SUBSET_FINITE]) On Fri, Feb 15, 2019 at 1:47 PM Chun Tian (binghe) <binghe.l...@gmail.com> wrote: > And also this one: > > Given `INFINITE N` and a fixed number `m`, how can I assert the > existence of another number `n` such that, > > m <= n /\ n IN N > > i.e. prove that > > ``!N m. INFINITE N ==> ?n. m <= n /\ n IN N`` > > --Chun > > Il 15/02/19 20:11, Chun Tian (binghe) ha scritto: > > Hi, > > > > I'm blocked at the following (strange) situation: > > > > I have an infinite set of integers (num) in which each integer n > > satisfies a property P(n): > > > > ∃N. INFINITE N ∧ ∀n. n ∈ N ⇒ P n > > > > Suppose above proposition is NOT true, how can I derive that, there must > > exist a number m such that for all n >= m, P(n) does NOT hold? i.e. > > > > ?m. !n. m <= n ==> ~(P n) > > > > Thanks in advance, > > > > Chun Tian > > > > _______________________________________________ > hol-info mailing list > hol-info@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/hol-info >
_______________________________________________ hol-info mailing list hol-info@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/hol-info