Hi,

ah... thanks, I didn’t see this theorem before.

—Chun

> Il giorno 11 set 2018, alle ore 10:08, Lorenz Leutgeb <lor...@leutgeb.xyz> ha 
> scritto:
> 
> Hi,
> 
> they are the same. Use the following theorem from prim_rec:
> 
> WF_IFF_WELLFOUNDED
> ⊢ ∀R. WF R ⇔ wellfounded R
> 
> Best,
> Lorenz
> 
> On Tue, 11 Sep 2018 at 17:59 Chun Tian (binghe) <binghe.l...@gmail.com 
> <mailto:binghe.l...@gmail.com>> wrote:
> Hi,
> 
> in prim_recTheory, there’s a definition of ``wellfounded``:
> 
> [wellfounded_def]  Definition
> 
>       ⊢ ∀R. wellfounded R ⇔ ¬∃f. ∀n. R (f (SUC n)) (f n)
> 
> In relationTheory, there’s a definition of ``WF``:
> 
> [WF_DEF]  Definition
> 
>       ⊢ ∀R. WF R ⇔ ∀B. (∃w. B w) ⇒ ∃min. B min ∧ ∀b. R b min ⇒ ¬B b
> 
> are they essentially the same thing? (and if so, how to prove?)
> 
> —Chun
> 
> _______________________________________________
> hol-info mailing list
> hol-info@lists.sourceforge.net <mailto:hol-info@lists.sourceforge.net>
> https://lists.sourceforge.net/lists/listinfo/hol-info 
> <https://lists.sourceforge.net/lists/listinfo/hol-info>

Attachment: signature.asc
Description: Message signed with OpenPGP using GPGMail

_______________________________________________
hol-info mailing list
hol-info@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to