Hi,

they are the same. Use the following theorem from prim_rec:

WF_IFF_WELLFOUNDED
⊢ ∀R. WF R ⇔ wellfounded R

Best,
Lorenz

On Tue, 11 Sep 2018 at 17:59 Chun Tian (binghe) <binghe.l...@gmail.com>
wrote:

> Hi,
>
> in prim_recTheory, there’s a definition of ``wellfounded``:
>
> [wellfounded_def]  Definition
>
>       ⊢ ∀R. wellfounded R ⇔ ¬∃f. ∀n. R (f (SUC n)) (f n)
>
> In relationTheory, there’s a definition of ``WF``:
>
> [WF_DEF]  Definition
>
>       ⊢ ∀R. WF R ⇔ ∀B. (∃w. B w) ⇒ ∃min. B min ∧ ∀b. R b min ⇒ ¬B b
>
> are they essentially the same thing? (and if so, how to prove?)
>
> —Chun
>
> _______________________________________________
> hol-info mailing list
> hol-info@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/hol-info
>
_______________________________________________
hol-info mailing list
hol-info@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to