kosiew commented on PR #15295: URL: https://github.com/apache/datafusion/pull/15295#issuecomment-2743256589
hi @TheBuilderJR I haven't tidied up the PR yet. Here's how I used the NestedSchema in test_datafusion_schema_evolution_with_compaction ```rust use datafusion::arrow::array::{ Array, Float64Array, StringArray, StructArray, TimestampMillisecondArray, }; use datafusion::arrow::datatypes::{DataType, Field, Schema, TimeUnit}; use datafusion::arrow::record_batch::RecordBatch; use datafusion::dataframe::DataFrameWriteOptions; use datafusion::datasource::file_format::parquet::ParquetFormat; use datafusion::datasource::listing::{ ListingOptions, ListingTable, ListingTableConfig, ListingTableUrl, }; use datafusion::datasource::nested_schema_adapter::NestedStructSchemaAdapterFactory; use datafusion::prelude::*; use std::error::Error; use std::fs; use std::sync::Arc; // Remove the tokio::test attribute to make this a regular async function async fn test_datafusion_schema_evolution_with_compaction() -> Result<(), Box<dyn Error>> { println!("==> Starting test function"); let ctx = SessionContext::new(); println!("==> Creating schema1 (simple additionalInfo structure)"); let schema1 = create_schema1(); let schema2 = create_schema2(); let batch1 = create_batch1(&schema1)?; let adapter = NestedStructSchemaAdapterFactory::create_appropriate_adapter( schema2.clone(), schema2.clone(), ); let (mapping, _) = adapter .map_schema(&schema1.clone()) .expect("map schema failed"); let mapped_batch = mapping.map_batch(batch1)?; let path1 = "test_data1.parquet"; let _ = fs::remove_file(path1); let df1 = ctx.read_batch(mapped_batch)?; println!("==> Writing first parquet file to {}", path1); df1.write_parquet( path1, DataFrameWriteOptions::default() .with_single_file_output(true) .with_sort_by(vec![col("timestamp_utc").sort(true, true)]), None, ) .await?; println!("==> Successfully wrote first parquet file"); println!("==> Creating schema2 (extended additionalInfo with nested reason field)"); let batch2 = create_batch2(&schema2)?; let path2 = "test_data2.parquet"; let _ = fs::remove_file(path2); let df2 = ctx.read_batch(batch2)?; println!("==> Writing second parquet file to {}", path2); df2.write_parquet( path2, DataFrameWriteOptions::default() .with_single_file_output(true) .with_sort_by(vec![col("timestamp_utc").sort(true, true)]), None, ) .await?; println!("==> Successfully wrote second parquet file"); let paths_str = vec![path1.to_string(), path2.to_string()]; println!("==> Creating ListingTableConfig for paths: {:?}", paths_str); println!("==> Using schema2 for files with different schemas"); println!( "==> Schema difference: additionalInfo in schema1 doesn't have 'reason' field" ); let config = ListingTableConfig::new_with_multi_paths( paths_str .into_iter() .map(|p| ListingTableUrl::parse(&p)) .collect::<Result<Vec<_>, _>>()?, ) .with_schema(schema2.as_ref().clone().into()); println!("==> About to infer config"); println!( "==> This is where schema adaptation happens between different file schemas" ); let config = config.infer(&ctx.state()).await?; println!("==> Successfully inferred config"); let config = ListingTableConfig { options: Some(ListingOptions { file_sort_order: vec![vec![col("timestamp_utc").sort(true, true)]], ..config.options.unwrap_or_else(|| { ListingOptions::new(Arc::new(ParquetFormat::default())) }) }), ..config }; println!("==> About to create ListingTable"); let listing_table = ListingTable::try_new(config)?; println!("==> Successfully created ListingTable"); println!("==> Registering table 'events'"); ctx.register_table("events", Arc::new(listing_table))?; println!("==> Successfully registered table"); println!("==> Executing SQL query"); let df = ctx .sql("SELECT * FROM events ORDER BY timestamp_utc") .await?; println!("==> Successfully executed SQL query"); println!("==> Collecting results"); let results = df.clone().collect().await?; println!("==> Successfully collected results"); assert_eq!(results[0].num_rows(), 2); let compacted_path = "test_data_compacted.parquet"; let _ = fs::remove_file(compacted_path); println!("==> writing compacted parquet file to {}", compacted_path); df.write_parquet( compacted_path, DataFrameWriteOptions::default() .with_single_file_output(true) .with_sort_by(vec![col("timestamp_utc").sort(true, true)]), None, ) .await?; let new_ctx = SessionContext::new(); let config = ListingTableConfig::new_with_multi_paths(vec![ListingTableUrl::parse( compacted_path, )?]) .with_schema(schema2.as_ref().clone().into()) .infer(&new_ctx.state()) .await?; let listing_table = ListingTable::try_new(config)?; new_ctx.register_table("events", Arc::new(listing_table))?; println!("==> select from compacted parquet file"); let df = new_ctx .sql("SELECT * FROM events ORDER BY timestamp_utc") .await?; let compacted_results = df.collect().await?; assert_eq!(compacted_results[0].num_rows(), 2); assert_eq!(results, compacted_results); let _ = fs::remove_file(path1); let _ = fs::remove_file(path2); let _ = fs::remove_file(compacted_path); Ok(()) } fn create_schema2() -> Arc<Schema> { let schema2 = Arc::new(Schema::new(vec![ Field::new("component", DataType::Utf8, true), Field::new("message", DataType::Utf8, true), Field::new("stack", DataType::Utf8, true), Field::new("timestamp", DataType::Utf8, true), Field::new( "timestamp_utc", DataType::Timestamp(TimeUnit::Millisecond, None), true, ), Field::new( "additionalInfo", DataType::Struct( vec![ Field::new("location", DataType::Utf8, true), Field::new( "timestamp_utc", DataType::Timestamp(TimeUnit::Millisecond, None), true, ), Field::new( "reason", DataType::Struct( vec![ Field::new("_level", DataType::Float64, true), Field::new( "details", DataType::Struct( vec![ Field::new("rurl", DataType::Utf8, true), Field::new("s", DataType::Float64, true), Field::new("t", DataType::Utf8, true), ] .into(), ), true, ), ] .into(), ), true, ), ] .into(), ), true, ), ])); schema2 } fn create_batch1(schema1: &Arc<Schema>) -> Result<RecordBatch, Box<dyn Error>> { let batch1 = RecordBatch::try_new( schema1.clone(), vec![ Arc::new(StringArray::from(vec![Some("component1")])), Arc::new(StringArray::from(vec![Some("message1")])), Arc::new(StringArray::from(vec![Some("stack_trace")])), Arc::new(StringArray::from(vec![Some("2025-02-18T00:00:00Z")])), Arc::new(TimestampMillisecondArray::from(vec![Some(1640995200000)])), Arc::new(StructArray::from(vec![ ( Arc::new(Field::new("location", DataType::Utf8, true)), Arc::new(StringArray::from(vec![Some("USA")])) as Arc<dyn Array>, ), ( Arc::new(Field::new( "timestamp_utc", DataType::Timestamp(TimeUnit::Millisecond, None), true, )), Arc::new(TimestampMillisecondArray::from(vec![Some(1640995200000)])), ), ])), ], )?; Ok(batch1) } fn create_schema1() -> Arc<Schema> { let schema1 = Arc::new(Schema::new(vec![ Field::new("component", DataType::Utf8, true), Field::new("message", DataType::Utf8, true), Field::new("stack", DataType::Utf8, true), Field::new("timestamp", DataType::Utf8, true), Field::new( "timestamp_utc", DataType::Timestamp(TimeUnit::Millisecond, None), true, ), Field::new( "additionalInfo", DataType::Struct( vec![ Field::new("location", DataType::Utf8, true), Field::new( "timestamp_utc", DataType::Timestamp(TimeUnit::Millisecond, None), true, ), ] .into(), ), true, ), ])); schema1 } fn create_batch2(schema2: &Arc<Schema>) -> Result<RecordBatch, Box<dyn Error>> { let batch2 = RecordBatch::try_new( schema2.clone(), vec![ Arc::new(StringArray::from(vec![Some("component1")])), Arc::new(StringArray::from(vec![Some("message1")])), Arc::new(StringArray::from(vec![Some("stack_trace")])), Arc::new(StringArray::from(vec![Some("2025-02-18T00:00:00Z")])), Arc::new(TimestampMillisecondArray::from(vec![Some(1640995200000)])), Arc::new(StructArray::from(vec![ ( Arc::new(Field::new("location", DataType::Utf8, true)), Arc::new(StringArray::from(vec![Some("USA")])) as Arc<dyn Array>, ), ( Arc::new(Field::new( "timestamp_utc", DataType::Timestamp(TimeUnit::Millisecond, None), true, )), Arc::new(TimestampMillisecondArray::from(vec![Some(1640995200000)])), ), ( Arc::new(Field::new( "reason", DataType::Struct( vec![ Field::new("_level", DataType::Float64, true), Field::new( "details", DataType::Struct( vec![ Field::new("rurl", DataType::Utf8, true), Field::new("s", DataType::Float64, true), Field::new("t", DataType::Utf8, true), ] .into(), ), true, ), ] .into(), ), true, )), Arc::new(StructArray::from(vec![ ( Arc::new(Field::new("_level", DataType::Float64, true)), Arc::new(Float64Array::from(vec![Some(1.5)])) as Arc<dyn Array>, ), ( Arc::new(Field::new( "details", DataType::Struct( vec![ Field::new("rurl", DataType::Utf8, true), Field::new("s", DataType::Float64, true), Field::new("t", DataType::Utf8, true), ] .into(), ), true, )), Arc::new(StructArray::from(vec![ ( Arc::new(Field::new("rurl", DataType::Utf8, true)), Arc::new(StringArray::from(vec![Some( "https://example.com", )])) as Arc<dyn Array>, ), ( Arc::new(Field::new("s", DataType::Float64, true)), Arc::new(Float64Array::from(vec![Some(3.14)])) as Arc<dyn Array>, ), ( Arc::new(Field::new("t", DataType::Utf8, true)), Arc::new(StringArray::from(vec![Some("data")])) as Arc<dyn Array>, ), ])), ), ])), ), ])), ], )?; Ok(batch2) } fn main() -> Result<(), Box<dyn Error>> { // Create a Tokio runtime for running our async function let rt = tokio::runtime::Runtime::new()?; // Run the function in the runtime rt.block_on(async { test_datafusion_schema_evolution_with_compaction().await })?; println!("Example completed successfully!"); Ok(()) } ``` -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org For additional commands, e-mail: github-h...@datafusion.apache.org